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Preface

The plan for this book arose from the desire for an introductory text on spectral
theory, which would not assume functional analysis as a prerequisite. I wanted this
text to include applications involving the Laplacian operator, and yet be concise
enough to be covered in a single semester. The inspiration comes in large part from
requests for independent study projects from undergraduate or first-year graduate
students. Many of these students have proposed topics in particular application areas
of spectral theory, such as automorphic forms, differential geometry, or quantum
mechanics. Although such applications are covered in sources such as Chavel [19]
or Iwaniec [47], books at this level generally assume basic functional analysis and
spectral theory as a prerequisite. Most of my independent study students have had
some real and complex analysis, but not functional analysis. I wanted to have a
text or short course that would bridge the gap between this background and more
specialized topics.

Although there are many good introductory books on functional analysis, the
shorter, one-semester texts generally do not include enough material on unbounded
or differential operators for the applications I had in mind. Books that do cover this
part of spectral theory comprehensively, such as the excellent series of Reed and
Simon [69–72], are much longer and therefore less suitable for a quick introduction.

The present text thus represents my attempt to produce a short, accessible
account of spectral theory that could serve as an introduction to a broad variety
of application areas involving the Laplacian operator. It is primarily based on notes
from a functional analysis course that I first gave about 15 years ago. To fit both
the introductory theory and some interesting applications into one semester posed
a significant challenge; it is already difficult to squeeze the essentials of functional
analysis into a single term. My strategy was to focus on a relatively small list of
applications (Weyl’s law for bounded domains, the theory of Schrödinger operators
with positive potentials, etc.). I built the first half of the course around these topics,
limiting the coverage of functional analysis background to the material that was
necessary for the chosen examples.

The outline for this book was developed by the same approach. The result is a
treatment of functional analysis that differs from more traditional texts in two major
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viii Preface

ways. First, the focus is almost exclusively on separable Hilbert spaces, and much
of the Banach space theory is omitted. Second, the theory of unbounded operators
is developed from the beginning, rather than as an addendum to the bounded case.
Applications to differential operators are introduced as early as possible, mainly in
the examples.

After a brief historical introduction in Chapter 1, the main body of the text
is roughly divided into two parts. Chapters 2 through 5 cover the theoretical
background, from the theory of Hilbert spaces and unbounded operators to the proof
of the spectral theorem. These chapters are sequential and strongly interdependent.
The second part, consisting of Chapters 6 through 9, is devoted to more specific
contexts such as the Dirichlet Laplacian or Schrödinger operators. These later
chapters are essentially independent and could be read in any order. This structure
provides the flexibility to support a one-semester functional course, a special topics
course, or an independent study project in a particular application area.

The book is aimed at an advanced undergraduate or beginning graduate level. The
reader is assumed to have background including real and complex analysis, measure
theory, and linear algebra, but no previous knowledge of functional analysis. The
necessary background material is sketched in the appendix, with references.

Acknowledgments It is a pleasure to thank Evans Harrell for encouragement and
advice regarding the content of this text. I am also grateful to my students Kenny
Jones and Varoon Pazhyanur, who worked through parts of the manuscript while
it was in development. Thanks also to Loretta Bartolini at Springer, for patience
and helpful advice during the development process, and to the series editors and
anonymous reviewers for helpful comments and suggestions.

Atlanta, GA, USA David Borthwick
October 2019
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Chapter 1
Introduction

In 1671 Isaac Newton adopted the Latin word “spectrum” to describe the spread of
colors illustrated in Figure 1.1, produced by passing white light through a prism.
The origins of spectral theory can be traced much earlier, however, in the context
of sound waves. Pythagoras discovered the relationship between the length of a
vibrating string and the musical pitch it produces, some 2000 years before Newton.
This observation is arguably the starting point for spectral theory.

400 500 600 700
Wavelength(nm)

Fig. 1.1 The spectrum of visible light

Marin Mersenne refined the work of Pythagoras in 1636, noting that the vibrating
string produces, in addition to its fundamental tone, a simultaneous set of overtones.
The frequencies of these overtones, visible as sharp peaks in Figure 1.2, are integer
multiples of the fundamental frequency. A century after Mersenne, Jean-Baptiste
d’Alembert explained the overtone phenomenon by developing the wave equation as
a model for the motion of the string. The wave equation admits sinusoidal solutions
whose frequencies come in integer multiples. This is the first historical case of an
observable spectral phenomenon being explained in terms of differential equations.

Another great milestone in the mathematical development of spectral theory is
Joseph Fourier’s study of the heat equation in 1807, based on the decomposition
of functions into trigonometric series. Fourier’s work led to the first systematic
treatment of the spectra of ordinary differential equations by Charles Sturm and
Joseph Liouville, in the 1830s. The spectral theory of partial differential operators
was subsequently developed by Gustav Dirichlet and Henri Poincaré, among others.

© Springer Nature Switzerland AG 2020
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2 1 Introduction

Fig. 1.2 The frequency
spectrum of a violin A string,
tuned to 440 Hz
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Matrix theory was also emerging during the same period. The concept of the
spectrum of a matrix first appears in the late eighteenth century, in the work of
Joseph-Louis Lagrange. Lagrange defined the moments of inertia of a rigid body in
terms of the characteristic values of a matrix. This application inspired Augustin-
Louis Cauchy to prove the spectral theorem for real symmetric matrices in 1826,
which was generalized to complex self-adjoint matrices by Charles Hermite in 1855.

With hindsight, the parallels between the matrix and differential operator ver-
sions of spectral theory are evident. The connection did not become explicit,
however, until the early 1900s. David Hilbert, building on the work of Vito Volterra
and Ivar Fredholm on integral equations, developed the spectral theory of integral
operators. This essentially generalizes the matrix theory to the context of infinite-
dimensional function spaces. The link to differential operators lies in the fact that
the primary integral operators of interest were solution operators (Green’s functions)
for classical PDE. Hilbert coined the term “eigenvalue” and was the first to refer to
the set of eigenvalues of a matrix or operator as its spectrum. His research laid the
foundation for the modern development of spectral theory and functional analysis.

On the empirical side, physical observations of the spectrum had evolved
dramatically in the nineteenth century. In 1802 William Wollaston introduced a
spectrometer accurate enough to detect dark absorption lines in the spectrum of
sunlight. Anders Jonas Ångström discovered that hot gases produce characteristic
emission lines around 1860, and was able to deduce the presence of hydrogen in
the sun by observing the characteristic emission lines shown in Figure 1.3. A few
years later, Jules Janssen discovered a new element, helium, by analyzing the solar
spectrum during an eclipse.

The existence of these absorption and emission lines posed a serious challenge
for classical physics: Why would atomic spectra be discrete? This challenge was
soon compounded by other physical observations, involving black body radiation
and the photoelectric effect, which revealed spectral anomalies not explained by
classical models. The need to explain these discrepancies ultimately led to the
development of quantum mechanics in the early twentieth century, by pioneers
including Max Planck, Niels Bohr, Werner Heisenberg, Louis de Broglie, Arthur
Compton, Albert Einstein, Erwin Schrödinger, and Max Born. The turning point
for the speculative quantum theory came in 1926, when Schrödinger published his
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Fig. 1.3 The visible hydrogen emission lines in the Balmer series

analysis of the spectrum of atomic hydrogen. Schrödinger showed that the atomic
emission lines were determined by the spectrum of a particular differential operator,
as predicted by the quantum theory.

Inspired by these revolutionary developments in physics, Marshall Stone and
John von Neumann sought to provide a mathematical foundation for quantum
mechanics by extending the spectral theory of Hilbert. Independently, during the
period 1929–1932, they established a general spectral theorem for linear operators.
This result generalizes the matrix theory of Cauchy and Hermite to a context that
includes partial differential operators, finally pulling together the distinct lines of
the development of spectral theory into a consistent framework.

The advances by Stone and von Neumann set the stage for the rapid development
of spectral theory as a research area in mathematics. Although quantum mechanics
provided much of the initial motivation, the modern development of the field
is notable for rich connections to other areas of mathematics, including partial
differential equations, harmonic analysis, number theory, differential geometry, and
operator algebras.

Notes

This brief historical sketch emphasizes topics covered later in this book and is not
meant to be comprehensive. Sources for this material include Birkhoff and Kreysig
[12], Dieudonné [25], Monna [63], and Steen [86].



Chapter 2
Hilbert Spaces

To set the stage for our development of spectral theory, we must first introduce
some basic tools of functional analysis. The scope of this discussion will be limited
to those aspects of the theory which will be needed later in the book. This means
that the focus is primarily on Hilbert spaces, and we will sometimes state results in
less than full generality for the sake of simplified exposition.

2.1 Normed Vector Spaces

Vector spaces in this book are assumed to be defined over the complex numbers,
unless otherwise indicated. The standard finite-dimensional example is C

n. The
length of a vector z ∈ C

n is defined by

|z| := √z · z

=
√
|z1|2 + · · · + |zn|2,

(2.1)

where z = (z1, . . . , zn). Note that |z| is equal to the Euclidean length of the
corresponding vector in R

2n. This length function serves as the prototype for the
following:

Definition 2.1. A norm on a complex vector space V is a function ‖·‖ : V → R

satisfying, for all v,w ∈ V and a ∈ C:

(i) positive definiteness: ‖v‖ ≥ 0 and ‖v‖ = 0 if and only if v = 0;
(ii) homogeneity: ‖av‖ = |a|‖v‖;

(iii) triangle inequality: ‖v + w‖ ≤ ‖v‖ + ‖w‖.

© Springer Nature Switzerland AG 2020
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6 2 Hilbert Spaces

Example 2.2. For a compact subset K ⊂ R
n, let C(K) denote the space of

continuous functions K → C. Continuous functions on a compact set are bounded,
so a natural choice of norm is

‖f ‖ := sup
x∈K

|f (x)|.

It is easy to check that the properties of Definition 2.1 are satisfied in this case. ♦
A normed vector space V is naturally equipped with a metric topology defined

by the distance function

dist(v,w) := ‖v − w‖.

In particular, a sequence {vn} ⊂ V converges to w ∈ V if

lim
n→∞‖vn − w‖ = 0.

Because we are often trying to establish the existence of a limit, it is extremely
useful to have a notion of convergence that does not make reference to the limit
vector. The sequence {vn} is Cauchy if

lim
n,m→∞‖vn − vm‖ = 0.

A convergent sequence is automatically Cauchy, by the triangle inequality. If every
Cauchy sequence in V converges in V , then V is said to be complete as a metric
space. Such spaces were studied extensively by Stefan Banach in the early 1920s.

Definition 2.3. A complete normed vector space is called a Banach space.

Series are also well defined in a normed vector space, with convergence defined
in terms of the limit of partial sums. We say that a series

∑
uk with uk ∈ V is

absolutely convergent if

∞∑
k=1

‖uk‖ <∞.

The completeness of a normed vector space can also be formulated in terms of the
connection between convergence and absolute convergence.

Theorem 2.4. A normed vector space V is complete if and only if every absolutely
convergent series is convergent.

Proof Suppose that V is complete, and let
∑
uk be an absolutely convergent series.

The difference of two partial sums can be estimated by the triangle inequality,
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∥∥∥∥
m∑
k=1

uk −
n∑
k=1

uk

∥∥∥∥ =
∥∥∥∥

m∑
k=n+1

uk

∥∥∥∥

≤
m∑

k=n+1

‖uk‖,

assumingm > n. Since
∑‖uk‖ <∞, this shows that the sequence of partial sums is

Cauchy. Therefore, the series
∑
uk converges in V by the completeness hypothesis.

Now assume that all absolutely convergent sequences converge in V , and let {wn}
be a Cauchy sequence. Using the Cauchy property, we can choose a subsequence
{wnk } such that

‖wnk − wnk+1‖ ≤ 2−k (2.2)

for k ∈ N. Let u1 := wn1 and uk := wnk − wnk−1 for k ≥ 2, so that

m∑
k=1

uk = wnm. (2.3)

By (2.2), the series
∑
uk converges absolutely, and therefore the subsequence {wnm}

converges. A Cauchy sequence with a convergent subsequence is convergent, by the
triangle inequality. 
�

2.2 Lp Spaces

A measure space is a triple (X,M, μ) consisting of a set X, a σ -algebra M of
subsets of X, and a countably additive measure function μ :M→ [0,∞]. We will
generally assume that X is σ -finite, meaning that X admits decomposition into a
countable union of sets of finite measure. Associated with the measure is an integral
denoted by

f �→
∫

X

f dμ,

defined for a measurable function f as long as f ≥ 0 or
∫
X
|f | < ∞. (See

Appendix A.1 for a brief review of measure and integration theory.) In the case
of Lebesgue measure on R

n, we resort to the usual calculus notation, with dnx

denoting the Lebesgue integral.
To each measure space we associate a family of normed function spaces

Lp(X, dμ), for 1 ≤ p ≤ ∞. For finite p this consists of measurable functions
for which



8 2 Hilbert Spaces

∫

X

|f |p dμ <∞, (2.4)

subject to the equivalence relation f ∼ g if f = g almost everywhere with respect
to μ. For a subsetΩ ⊂ R

n, Lebesgue measure is assumed by default, and we simply
write Lp(Ω) in this case.

The condition (2.4) defines a linear space by the convexity of the function xp for
p ∈ [1,∞). The natural choice for a norm on Lp(X, dμ) is

‖f ‖p :=
(∫

X

|f |p dμ
)1
p

.

The power 1/p is included for the sake of homogeneity, and the equivalence relation
guarantees that ‖·‖p is positive definite. The triangle inequality for ‖·‖p is known
as the Minkowski inequality:

‖f + g‖p ≤ ‖f ‖p + ‖g‖p. (2.5)

See Appendix A.2 for the proof.
For a continuous, compactly supported function f , it is easy to check that

lim
p→∞‖f ‖p = sup |f |.

This suggests that the appropriate extension of the Lp norm to the case p = ∞
should be a sup norm. We therefore define L∞(X, dμ) as the space of functions
f : X → C which are bounded almost everywhere with respect to μ, under the
same equivalence relation as for the other Lp spaces. The sup norm is adapted to
the equivalence relation by setting

‖f ‖∞ := inf
{
m ∈ R : |f | ≤ m a.e.

}
.

This is called the essential supremum of |f |.
We use a lowercase � to distinguish Lp spaces based on counting measure. That

is, if X is a discrete set, such as N or Z, then

�p(X) := Lp(X, dν),

where ν denotes counting measure. For example, functions N → C are naturally
identified with sequences, and integration with respect to counting measure is series
summation. Thus, the norm on �p(N) is given by

‖(a1, a2, . . . )‖p :=
( ∞∑
j=1

|aj |p
)1
p

.
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One of the fundamental results of the Lebesgue integration theory is the
completeness of Lp spaces. This was originally proven independently for p = 2
by Frigyes Riesz and Ernst Fischer.

Theorem 2.5 (Riesz–Fischer). For p ∈ [1,∞], Lp(X, dμ) is a Banach space.

The proof is given in Appendix A.2.

2.3 Bounded Linear Maps

A linear map between vector spaces is called an operator. We will adopt a more
specialized usage of this term in Section 3.1, in the context of Hilbert spaces. Here
we focus on more basic definitions and results. Throughout this section, V and W
are assumed to be normed vector spaces, not necessarily complete unless explicitly
indicated.

Definition 2.6. An operator T : V → W is bounded if there exists a constant
C > 0 such that

‖T v‖ ≤ C‖v‖, for all v ∈ V . (2.6)

The space of bounded operators V → W is denoted by L(V,W), which is
simplified to L(V) in the case W = V .

It is not difficult to see that a linear map satisfies (2.6) if and only if it is
continuous; the proof is left to Exercise 2.1. The set L(V,W) clearly forms a vector
space. The operator norm, defined for T ∈ L(V,W) by

‖T ‖ := sup
‖v‖=1

‖T v‖ (2.7)

is the optimal constant for the inequality (2.6). It is easy to verify that this has the
properties of a norm.

The operator norm satisfies a convenient multiplicative estimate: for T ∈
L(V1,V2) and S ∈ L(V2,V3), we have ST ∈ L(V1,V3) and

‖ST ‖ ≤ ‖S‖‖T ‖. (2.8)

This follows directly from the definition (2.7).

Example 2.7. Suppose V = C
n with the Euclidean norm (2.1). Then for T ∈

L(Cn,W),

‖T z‖ ≤
n∑
j=1

|zj |‖T ej‖,
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where z = (z1, . . . , zn) and {ej } is the standard coordinate basis. If M :=
max{‖T ej‖}, then

‖T z‖ ≤ Mn|z|,

and so T is bounded. This argument can be extended to show that an operator V →
W is bounded whenever V is finite-dimensional. ♦
Example 2.8. Let (X,M, μ) be a measure space. For f ∈ L∞(X, dμ), we define
the multiplication operator Mf on Lp(X, dμ),

Mf : v �→ f v.

Since |f | ≤ ‖f ‖∞ almost everywhere, we can estimate

‖f v‖p ≤ ‖f ‖∞‖v‖p.

Thus, Mf is bounded with ‖Mf ‖ ≤ ‖f ‖∞.
In fact, these norms are equal. For a < ‖f ‖∞, set A := {|f | ≥ a} and let χA

denote the characteristic function of A. Note that ‖χA‖p = μ(A), which is strictly
positive by the choice of a. The estimate

‖f χA‖p ≥ a‖χA‖p
thus shows that ‖Mf ‖ ≥ a for all a < ‖f ‖∞. Therefore

‖Mf ‖ = ‖f ‖∞.

♦
Example 2.9. Let V = C1[0, 1], the space of continuously differentiable functions
on the interval [0, 1], and W = C[0, 1], both equipped with the sup norm. The
derivative T := d/dx is well defined as an operator V → W , but clearly not
bounded. For example, the functions fn(x) := xn satisfy sup |fn| = 1 and
sup |Tfn| = n. ♦

Certain aspects of linear algebra carry over directly to the theory of bounded
operators. The kernel of T ∈ L(V,W) is defined by

ker(T ) := {v ∈ V : T v = 0},

and the range is the image,

range(T ) := {T v : v ∈ V }.

The rank of T is the dimension of the range, which might be infinite. There is no
rank-nullity theorem for T unless V is finite-dimensional.
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By linearity, ker(T ) is a subspace of V , and T is injective if and only if ker(T ) =
{0}. The bijectivity of T is equivalent to the existence of an inverse linear map
T −1 :W → V . However, the inverse map T −1 is not necessarily bounded.

An isometry is a map between metric spaces that preserves the distance between
points. For operators on normed vector spaces, this is equivalent to preserving the
norm. That is, an operator T ∈ L(V ,W) is an isometry if and only if

‖T v‖ = ‖v‖

for all v ∈ V . Note that isometries are not required to be invertible. An example of
this is the right shift operator on �2(N), which maps the sequence (a1, a2, . . . ) to
(0, a1, a2, . . . ).

2.3.1 Operator Topologies

The metric topology on L(V ,W) defined by the operator norm is naturally called the
operator topology. The following result shows that this choice is natural, in terms
of completeness.

Theorem 2.10. If V and W are normed vector spaces and W is complete, then
L(V,W) is complete with respect to the operator norm.

Proof Let {Tn} be a Cauchy sequence in L(V,W). For v ∈ V ,

‖Tnv − Tmv‖ ≤ ‖Tn − Tm‖‖v‖

implying that the sequence {Tnv} is Cauchy in W . Therefore, by the completeness
of W , we can define T v as the limit

T v := lim
n→∞ Tnv. (2.9)

It follows from the linearity of the maps Tn that T is linear. To see that T is bounded,
we note that a Cauchy sequence is necessarily bounded, so there exists a constant
M <∞ such that ‖Tn‖ ≤ M for all n. It follows that that ‖T ‖ ≤ M also.

It remains to show that Tn → T with respect to the operator norm. Since {Tn} is
Cauchy, given ε > 0 there exists N so that ‖Tn − Tm‖ < ε for n,m ≥ N . For a unit
vector v, we can choose m ≥ N so that ‖Tmv − T v‖ < ε, by the definition (2.9).
For n ≥ N , this gives

‖(Tn − T )v‖ ≤ ‖(Tn − Tm)v‖ + ‖Tmv − T v‖
< 2ε.

Since N was chosen independently of v, this shows ‖Tn − T ‖ → 0. 
�
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Convergence in operator norm is the analog of uniform convergence for ordinary
functions. In fact the operator topology is sometimes referred to as the “uniform”
topology.

There are also weaker notions of convergence for operators that prove to be
quite useful. For example, the analog of pointwise convergence of functions is the
following. We say that Tn → T in the strong operator sense if

lim
n→∞‖Tnv − T v‖ = 0, (2.10)

for all v ∈ V . Strong operator convergence has already played a role in the proof of
Theorem 2.10. The limiting operator T was first obtained as a strong limit in (2.9).
We then used the Cauchy assumption to upgrade to operator convergence.

The use of the term “strong” here is perhaps confusing, since strong operator
convergence is evidently weaker than operator-norm convergence. The intended
comparison is to another topology defined as follows. The dual space of a
topological vector space W is

W ′ := L(W,C),

i.e., W ′ is the space of continuous linear functionals W → C. We say that Tn → T

in the weak operator sense if

lim
n→∞F(Tnv) = F(T v) (2.11)

for all v ∈ V and F ∈ W ′. Clearly, strong operator convergence implies weak
operator convergence, because of the continuity requirement on functionals in the
dual space.

Example 2.11. Suppose T denotes the left shift operator on �2(N), defined by

T (a1, a2, . . . ) := (a2, a3, . . . ).

Clearly ‖T k‖ = 1 for all k ∈ N, so T k does not converge to 0 in the operator
topology as k→∞. On the other hand, since

∥∥T k(a1, a2, . . . )
∥∥2 =

∞∑
j=k+1

|aj |2

and
∑|aj |2 <∞, we have T k → 0 in the strong sense.

Now let S denote the right shift operator

S(a1, a2, . . . ) := (0, a1, a2, . . . ).
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Since ‖Ska‖ = ‖a‖ for each a ∈ �2(N), Sk clearly does not converge to 0 in the
strong operator sense. However, we do have Sk → 0 in the weak operator sense. The
Riesz lemma, to be proven in Section 2.6, identifies the dual space of �2(N) with
�2(N) itself. That is, a continuous linear functional F : �2(N)→ C corresponds to
a unique element b ∈ �2(N) such that

F(a) = 〈b, a〉.

For k ∈ N,

〈b, Ska〉 =
∞∑
j=1

bj+kaj

= 〈T kb, a〉.

Since T k → 0 in the strong operator sense, Sk → 0 in the weak sense. ♦
Example 2.12. Consider multiplication operators on Lp(X, dμ), defined as in
Example 2.8. For a sequence {fn} ⊂ L∞(X, dμ), assume that fn → 0 pointwise
and ‖fn‖∞ ≤ C for some constant C. The dominated convergence theorem implies
that

lim
n→∞

∫

X

|fnu|p dμ = 0

for u ∈ Lp(X, dμ). Hence, Mfn → 0 in the strong operator sense.
To check for operator-norm convergence, we can use the estimate

‖fnu‖p ≤ ‖fn‖∞‖u‖p.

This shows that Mfn → 0 in the operator topology provided that ‖fn‖∞ → 0, i.e.,
if fn → 0 uniformly. ♦

2.3.2 Uniform Boundedness

We conclude this section with a fundamental result in functional analysis, some-
times called the Banach–Steinhaus theorem. Our main use for this will be to convert
weaker pointwise bounds on operators into estimates of the operator norms.

Theorem 2.13 (Uniform Boundedness Principle). Let V be a Banach space and
W a normed vector space. Assume that a subset F ⊂ L(V,W) satisfies

sup
T ∈F

‖T v‖ <∞
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for each v ∈ V . Then F is uniformly bounded in the sense that

sup
T ∈F

‖T ‖ <∞.

Proof We will prove the contrapositive statement, starting from the assumption
that

sup
T ∈F

‖T ‖ = ∞.

This assumption implies that there exists a sequence {Tn} ⊂ F such that

‖Tn‖ ≥ 4n,

for all n. Our goal is to construct a convergent sequence vn → v such that ‖Tnvn‖
grows fast enough to ensure that ‖Tnv‖ → ∞. This will produce a vector v for
which

sup
T ∈F

‖T v‖ = ∞.

To set up the construction of {vn}, we first observe that for all v ∈ V and ε > 0,

‖Tn‖ ≤ 1

ε
sup

u∈V :‖u−v‖<ε
‖Tnu‖. (2.12)

This follows by first noting that the triangle inequality implies

‖Tnw‖ ≤ 1

2

∥∥Tn(v0 + w)
∥∥+ 1

2

∥∥Tn(v0 − w)
∥∥,

and then taking the supremum over ‖w‖ < ε on both sides.
Fix a constant c with 1

2 < c < 1. The sequence {vn} is constructed by induction
starting from some arbitrary v0 ∈ V . Given vn−1, there exists according to (2.12) a
vector vn ∈ V such that

‖vn − vn−1‖ < 3−n

and

‖Tnvn‖ ≥ c3−n‖Tn‖. (2.13)

The resulting sequence {vn} is Cauchy, because for m ≥ n,

‖vm − vn‖ ≤
∞∑

k=n+1

3−k = 3−n

2
. (2.14)
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By completeness, there exists v ∈ V such that vn → v. Taking m → ∞ in (2.14)
gives

‖v − vn‖ ≤ 3−n

2
.

Combining this with (2.13) yields the lower bound

‖Tnv‖ ≥ ‖Tnvn‖ − ‖Tn(v − vn)‖
≥
(
c − 1

2

)
3−n‖Tn‖.

Therefore, by the assumption that ‖Tn‖ ≥ 4n,

‖Tnv‖ ≥
(
c − 1

2

)
( 4

3 )
n.

Because c > 1
2 , this yields ‖Tnv‖ → ∞. 
�

2.4 Hilbert Spaces

In Euclidean C
n, the square of the norm can be written as a dot product z · z, which

is the restriction to the diagonal of the pairing,

(z, w) �→ z · w.

This pairing is called a sesquilinear function of (z, w), meaning conjugate-linear in
the first variable and linear in the second. The placement of the conjugate is a matter
of convention. We follow the quantum mechanics style here in conjugating on the
first variable rather than the second.

Definition 2.14. An inner product on a complex vector space V is a sesquilinear
pairing 〈·, ·〉 : V × V → C satisfying the following conditions:

(i) 〈v, v〉 ≥ 0 for all v ∈ V , and 〈v, v〉 = 0 if and only if v = 0.
(ii) 〈u, v〉 = 〈v, u〉 for all u, v ∈ V .

By analogy to the Euclidean case, we can create a norm from the inner product
by setting

‖v‖ := √〈v, v〉. (2.15)

Positive definiteness and homogeneity of the norm follow immediately from the
defining conditions of the inner product. To establish the triangle inequality, we first
prove the following:
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Lemma 2.15 (Cauchy–Schwarz Inequality). If 〈·, ·〉 is an inner product on a
complex vector space V , then

|〈v,w〉| ≤ ‖v‖‖w‖ (2.16)

for v,w ∈ V , where ‖·‖ is defined by (2.15).

Proof The result is trivial if w = 0, and for w �= 0 we can reduce to the case
‖w‖ = 1 by rescaling. For ‖w‖ = 1 the inequality follows from

0 ≤ ∥∥v − 〈w, v〉w∥∥2

= ‖v‖2 − |〈w, v〉|2.

�

Using Cauchy–Schwarz, it is now easy to see the (2.15) satisfies the triangle
inequality. We can simply estimate

‖v + w‖2 = ‖v‖2 + 2 Re〈v,w〉 + ‖w‖2

≤ ‖v‖2 + 2‖v‖‖w‖ + ‖w‖2

= (‖v‖ + ‖w‖)2.

This completes the argument that (2.15) is a norm.

Example 2.16. For a measure space (X,M, μ), consider the space L2(X, dμ). The
pairing

〈f, g〉 :=
∫

X

f g dμ

is related to the L2 norm by (2.15), and clearly satisfies the properties of an inner
product. ♦

None of the other Lp spaces with p �= 2 are inner product spaces. One way to
see this is by means of a simple identity from Euclidean geometry.

Lemma 2.17 (Parallelogram Law). For a normed vector space V , there exists an
inner product for which ‖v‖2 := 〈v, v〉 if and only if

‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2

for all u, v ∈ V .

The proof of Lemma 2.17 is a straightforward calculation. The main point is the
polarization identity,
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〈u, v〉 = 1

4

(
‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2

)
, (2.17)

which is a direct consequence of (2.15). For any norm, the right side of (2.17) defines
a candidate for an inner product. The condition that this function is sesquilinear is
equivalent to the parallelogram law.

An inner-product space carries a metric topology defined by the canonical norm
(2.15). As with normed vector spaces, completeness is an essential property for
many applications.

Definition 2.18. A Hilbert space H is a complete inner-product space.

Function spaces with complete inner products played an important role in the
work of David Hilbert and others on integral equations, in the first decade of
the twentieth century. It was von Neumann who later coined the term “Hilbert
space.” The fundamental example is L2(X, dμ). All of the explicit Hilbert spaces
encountered in this book will be either L2 spaces or related spaces based on some
modification of the L2 bracket.

The polarization identity shows that an isometry of inner product spaces
preserves the inner product as well as the norm. A unitary map is a bijective
isometry between Hilbert spaces. Operators T1 ∈ L(H1) and T2 ∈ L(H2) are
said to be unitarily equivalent if they are conjugate to each other by a unitary map
U : H1 → H2, meaning that

T2 = UT1U
−1.

Example 2.19. On L2(Rn) the Fourier transform is defined as an extension of the
integral

f̂ (ξ) := (2π)−n/2
∫

Rn

e−ix·ξ f (x) dnx. (2.18)

Although the right-hand side makes sense only if f is integrable, Plancherel’s
theorem (reviewed in Appendix A.3) says that the map F : f �→ f̂ extends by
continuity to a unitary operator on L2(Rn). ♦

For an inner product space V which is not complete, we can define its abstract
completion by a standard metric space construction. Let Ṽ be the set of equivalence
classes of Cauchy sequences in V , where {uj } ∼ {vj } if

lim
j→∞‖uj − vj‖ = 0.

The inner product of two Cauchy sequences is defined in the obvious way by

〈{uj }, {vj }
〉 := lim

j→∞〈uj , vj 〉. (2.19)
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One can check that this yields a well-defined inner product, with respect to which Ṽ
is a Hilbert space; see Exercise 2.2. The original space V is naturally embedded as
a dense subspace of Ṽ , by associating a constant sequence to each vector.

Given two Hilbert spaces H1 and H2, the direct sum is defined as the set of pairs
(u1, u2) ∈ H1 ×H2, with

〈
(u1, u2), (v1, v2)

〉
H1×H2

:= 〈u1, v1〉H1
+ 〈u2, v2〉H2

.

To extend this definition to a countable sum requires an extra restriction. For the
sequence of Hilbert spaces {Hj }∞j=1, we define

∞⊕
j=1

Hj :=
{
(u1, u2, . . . ) : uj ∈ Hj ,

∑‖uj‖2
Hj

<∞}. (2.20)

The assumption on norms guarantees convergence of the inner product defined by

〈
(u1, u2, . . . ), (v1, v2, . . . )

〉 :=
∞∑
j=1

〈uj , vj 〉Hj
.

We leave to Exercise 2.3 to check that the countable direct sum is complete and
therefore a Hilbert space.

2.5 Sobolev Spaces

Many of the applications developed later in this book involve differential operators.
One of the primary tools used to analyze such operators is a family of function
spaces defined by requiring derivatives up to a certain order to lie in an Lp space.
Although Beppo Levi was the first to consider such spaces, in the early twentieth
century, they are named for Sergei Sobolev, whose systematic development in 1950
[84] helped to establish their fundamental importance in PDE theory. For simplicity,
we will develop only the p = 2 case, since this covers all of our applications.

2.5.1 Weak Derivatives

The classical notion of derivative does not apply to L2 functions, which are not
necessarily even defined at all points. To impose the differentiability requirements
for Sobolev spaces, we use instead the concept of weak derivatives. These are
essentially functions which behave like derivatives in terms of integration by parts.
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For an open subset Ω ⊂ R
n, let L1

loc(Ω) denote the space of locally integrable
functions, i.e., functions Ω → C which are integrable over compact subsets of Ω .
As with the other Lp spaces, functions in L1

loc are taken to be equivalent if they are
equal almost everywhere.

For a multi-index α ∈ (N0)
n, define the differential operator

Dα := ∂
α1
1 . . . ∂αnn ,

of order |α| := α1 + · · · + αn. Let u ∈ L1
loc(Ω). If there exists a function u(α) ∈

L1
loc(Ω) such that

∫

Ω

u(α)ψ dx = (−1)|α|
∫

Ω

uDαψ dnx (2.21)

for all ψ ∈ C∞0 (Ω), then we say that u admits a weak derivative Dαu := u(α). (The
subscript on C∞0 indicates compact support.) This is just the standard integration by
parts formula, so the weak definition includes classical derivatives as a special case.

Example 2.20. In dimension one, by the Lebesgue differentiation theory, a function
which is absolutely continuous is differentiable almost everywhere. Moreover,
its derivative is integrable, and the fundamental theorem of calculus relates the
derivative to the integral in the usual way. Therefore, if f is absolutely continuous
on some interval I ⊂ R, then the function f ′ defined in the Lebesgue sense qualifies
as a weak derivative.

To see how weak differentiability can fail, consider a function created by splicing
two separate functions together,

f (x) :=
{
f+(x), x > 0,

f−(x), x < 0,

where f± are C1. For ψ ∈ C∞0 (R), integration by parts gives

−
∫ ∞

−∞
fψ ′ dx = −

∫ 0

−∞
f−ψ ′ dx −

∫ ∞

0
f+ψ ′ dx

= (f+ − f−)ψ
∣∣∣
x=0

+
∫ 0

−∞
f ′−ψ dx +

∫ ∞

0
f ′+ψ dx.

The first term depends onψ only throughψ(0), and so cannot possibly be recovered
from the integral of ψ against another function. Therefore, the weak derivative
of f exists only if f+(0) = f−(0), and is given in this case by splicing the two
derivatives,
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f ′(x) =
{
f ′+(x), x > 0,

f ′−(x), x < 0.

♦
Example 2.21. For f ∈ L2(Rn), a formal integration by parts in (2.18) gives the
formula F(Dαf ) = (iξ)αf̂ , which we can use to construct a weak derivative.
Assuming that ξαf̂ ∈ L2(Rn), set

f (α) := F−1((iξ)αf̂ ).

By Plancherel’s theorem, for ψ ∈ C∞0 (Rn),

〈f (α), ψ〉 = 〈(iξ)αf̂ , ψ̂〉
= (−1)|α|〈f̂ , (iξ)αψ̂〉
= (−1)|α|〈f̂ , D̂αψ〉
= (−1)|α|〈f,Dαψ〉.

(2.22)

This shows that Dαf = f (α) as a weak derivative.
This argument can be reversed to prove the converse statement. If f ∈ L2(Rn)

has a weak derivative Dαf which is also contained in L2(Rn), then ξαf ∈ L2(Rn)

and Dαf is the inverse Fourier transform of (iξ)αf̂ . ♦
Because C∞0 (Ω) is a dense subset of L1(Ω), a weak derivative Dαu defined by

(2.21) is unique as an element of L1
loc(Ω). It also follows easily from (2.21) that

weak differentiation is linear, by the linearity of the integrals.
If a function u ∈ L1

loc(Ω) admits weak derivatives up to order |α|, then for
f ∈ C∞(Ω) a simple calculation shows that Dα(f u) exists as a weak derivative
and satisfies the standard Leibniz rule,

Dα(f u) =
∑
β≤α

α!
β!(α − β)! (D

βf )(Dα−βu).

The fact that we use the same notation for both weak and classical derivatives is
justified by the following consistency result.

Lemma 2.22. A function in L1
loc(Ω) is contained in Cm(Ω) for m ∈ N if and only

if it is continuous and its weak derivatives to order m exist and are continuous. In
this case the weak and classical derivatives coincide.

Proof If u ∈ Cm(Ω), then the classical derivatives satisfy (2.21) by integration
by parts. For the converse, it suffices to work on R

n since Cm is a local condition.
Suppose that u ∈ C(Rn) has weak derivatives u(α) ∈ C(Rn) satisfying (2.21) for
|α| ≤ m. Fix ψ ∈ C∞0 (Rn) with
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∫

Rn

ψ dnx = 1,

and set ψε(x) := ε−nψ(x/ε) for ε > 0. Then u ∗ ψε is a smooth approximation to
u, converging uniformly on compact sets as ε→ 0.

By (2.21),

u(α) ∗ ψε = u ∗ (Dαψε)

= Dα(u ∗ ψε),

where Dα denotes a classical derivative here. Hence, by the assumption that u(α) is
continuous, Dα(u ∗ ψε) converges to u(α) uniformly on compact sets for |α| ≤ m.
A standard calculus argument, based on the mean value theorem, shows that for a
sequence of C1 functions, uniform convergence of both functions and derivatives
implies that the limit function is also C1. Applying this inductively in m yields
u ∈ Cm(Rn). 
�

2.5.2 Hm Spaces

The Sobolev spaces on an open set Ω ⊂ R
n are defined for m ∈ N by

Hm(Ω) := {u ∈ L2(Ω) : Dαu ∈ L2(Ω) for |α| ≤ m
}
, (2.23)

where Dαu is defined weakly as in Section 2.5.1. As with Lp spaces, Sobolev
functions are identified if they are equal almost everywhere. These spaces are
equipped with inner products,

〈u, v〉Hm :=
∑
|α|≤m

〈Dαu,Dαv〉, (2.24)

and corresponding norms,

‖u‖Hm :=
( ∑
|α|≤m

‖Dαu‖2
)1/2

. (2.25)

In our notation, ‖·‖2 is reserved for to the L2 norm, assuming the domain Ω is clear
from context. The corresponding inner product is denoted by 〈·, ·〉without subscript.
The Hm norms and inner products will always be indicated explicitly, as in (2.24)
and (2.25).
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Example 2.23. From Example 2.21, we can deduce that

Hm(Rn) = {f ∈ L2(Rn) : |ξ |mf̂ ∈ L2(Rn)
}
. (2.26)

Note that (2.26) makes sense for all m ≥ 0, not just for integers. ♦
Example 2.24. We claim that

H 1(0, 1) = {f ∈ AC[0, 1] : f ′ ∈ L2(0, 1)
}
,

where AC denotes the space of absolutely continuous functions. The inclusion

{
f ∈ AC[0, 1] : f ′ ∈ L2(0, 1)

} ⊂ H 1(0, 1)

follows immediately from the Lebesgue differentiation theory cited in Exam-
ple 2.20.

To prove the converse statement, suppose that f ∈ H 1(0, 1). The fact that the
weak derivative f ′ is contained in L2(0, 1) implies that f ′ is integrable on (0, 1).
We can thus define its antiderivative by

g(x) :=
∫ x

0
f ′(t) dt.

Again by the Lebesgue differentiation theorem, g is absolutely continuous on [0, 1],
g′ exists (in the classical sense) almost everywhere, and g′ = f ′ in the L2 sense.
This implies that

∫ 1

0
(f − g)′ ψ dx = 0,

for all ψ ∈ C∞0 (Ω), i.e., the weak derivative of f − g is 0. By Lemma 2.22, f − g
is classically differentiable and hence constant. This proves that f is absolutely
continuous on [0, 1]. ♦

The definition (2.23) can be extended by replacing the L2 norms with Lp. This
yields a larger family of Sobolev spaces which are denoted by Wm,p. The use of the
letter H for the case p = 2 is meant to reflect the following result:

Theorem 2.25. Hm(Ω) is a Hilbert space for each m ∈ N.

Proof Suppose that {um} is a Cauchy sequence in Hm(Ω). Then {um} is Cauchy
with respect to the L2 norm in particular, so we can define a limit function u :=
lim um in L2(Ω). Similarly, for each α with |α| ≤ m, {Dαum} is a Cauchy sequence
in L2(Ω) and we can define

u(α) := lim
m→∞D

αum

in L2(Ω).



2.5 Sobolev Spaces 23

It remains to show that u(α) is the weak derivative of u. By the definition of
Dαum, given ψ ∈ C∞0 (Ω),

∫

Ω

ψDαum dx = (−1)|α|
∫

Ω

umD
αψ dnx.

The L2 convergence allows us to take m→∞ on both sides to obtain
∫

Ω

ψu(α) dx = (−1)|α|
∫

Ω

uDαψ dnx.

Hence the weak derivative Dαu exists for |α| ≤ m and is given by u(α) ∈ L2(Ω).

�

Sobolev spaces are used to measure regularity of functions, providing a more
flexible alternative to the family of Cm spaces. We saw in Example 2.24 that H 1

functions are continuous in dimension one. It turns out that Sobolev regularity can
be translated back to classical regularity more generally, but the relationship depends
on the dimension.

Theorem 2.26 (Sobolev Embedding). For Ω ⊂ R
n, if m > k + n/2 then a

function in Hm(Ω) admits a representative in Ck(Ω).

Proof Since differentiability is a local property, it suffices to prove this for Ω =
R
n. For u ∈ Hm(Rn), let us denote the weak derivatives for |α| ≤ m by

u(α) := F−1((iξ)αû).

For this proof we will reserve the notation Dα for the classical derivative.
For |α| ≤ k we have

∫

Rn

∣∣ξαû∣∣ dnξ ≤
∫

Rn

(1+ |ξ |2)m/2∣∣û(ξ)∣∣ |ξ |k
(1+ |ξ |2)m/2 d

nξ.

The function |ξ |k(1+ |ξ |2)−m/2 is in L2 for m > k + n/2, so the Cauchy–Schwarz
inequality gives

∥∥ξαû∥∥1 ≤ C‖u‖Hm.

By Riemann–Lebesgue (Lemma A.16), the fact that ξαû ∈ L1 implies that u(α) is
continuous. Therefore u(α) = Dαu in the classical sense, by Lemma 2.22. 
�

If a function in Hm admits a continuous representative, then we assume that this
representative is chosen by default. Under this convention, the conclusion of the
embedding theorem could be restated as

Hm(Ω) ⊂ Ck(Ω).
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Note that Theorem 2.26 covers only differentiability in the interior. The result can be
improved to Ck(Ω), provided ∂Ω is sufficiently regular. (See, for example, Evans
[29, §5.6.3].)

2.6 Orthogonality

One of the principal reasons why Hilbert spaces are easier to work with than Banach
spaces is the concept of orthogonality associated with the inner product. This
implies some important results with a geometric flavor analogous to the Euclidean
theory of vectors in R

n.
In a Hilbert space H, the orthogonal complement of a subset E is defined by

E⊥ := {u ∈ H : 〈u, v〉 = 0 for all v ∈ E}.

The linearity of the inner product implies that E⊥ is a subspace, even if E is not.
Furthermore, since the inner product is easily seen to be continuous by the Cauchy–
Schwarz inequality, the space E⊥ is closed. It is useful to note that

(E⊥)⊥ = span(E), (2.27)

where span denotes the set of all finite linear combinations of elements; see
Exercise 2.4.

As in linear algebra, orthogonal complements provide a tool for decomposing
Hilbert spaces as a direct sum of subspaces. The one key difference is that subspaces
are automatically closed in finite dimensions, while for infinite-dimensional spaces
this is an extra condition.

Theorem 2.27 (Orthogonal Decomposition). IfW is a closed subspace of H, then

H = W ⊕W⊥.

Proof Since W ∩ W⊥ = {0}, by the positive definiteness of the inner product, it
suffices to show that H = W +W⊥. The strategy comes from the fact that, in the
Euclidean case, the projection of u ∈ H intoW is the vectorw ∈ W which is closest
to u, as illustrated in Figure 2.1.

To construct w, let

d := inf
y∈W

‖y − u‖,

and choose a sequence {wn} in W such that

lim
n→∞‖wn − u‖ = d. (2.28)
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We claim that {wn} is Cauchy. To see this, first note that by the parallelogram law,

‖wn − wm‖2 = ‖(wn − u)− (wm − u)‖2

= 2‖wn − u‖2 + 2‖wm − u‖2 − ‖wn + wm − 2u‖2.

Since 1
2 (wn + wm) ∈ W ,

∥∥ 1
2 (wn + wm)− u

∥∥ ≥ d,

and thus

‖wn − wm‖2 ≤ 2‖wn − u‖2 + 2‖wm − u‖2 − 4d2.

By (2.28), this shows that

lim
n,m→∞‖wn − wm‖ = 0.

Hence {wn} is Cauchy and therefore there exists a limit vector w := limwn. By the
assumption that W is closed, w ∈ W .

Fig. 2.1 Orthogonal
projection into W

u

w

d

W

To complete the proof, we must show that v := u − w lies in W⊥. Note that
‖v‖ = d by the construction of w. Let y ∈ W and λ ∈ C. Because w − λy ∈ W ,

d2 ≤ ‖u− (w − λy)‖2

= ‖v + λy‖2

= d2 + 2 Re[λ〈v, y〉]+ |λ|2‖y‖2.

Setting λ = reiθ and taking r → 0 gives

Re
[
eiθ 〈v, y〉

]
≥ 0.

This inequality holds for all θ , implying that 〈v, y〉 = 0. Since y was an arbitrary
element of W , it follows that v ∈ W⊥. 
�
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An orthogonal projection on H is an operator P ∈ L(H) such that P 2 = P and
H = range(P )⊕ ker(P ). Theorem 2.27 could be paraphrased as the statement that
for each closed subspace W ⊂ H there exists an orthogonal projection with range
equal to W .

Orthogonal decomposition plays an important role in the proof of the following
result, which identifies elements of the dual space H′ := L(H,C) with vectors in
H.

Theorem 2.28 (Riesz Lemma). For each F ∈ H′, there exists a unique v ∈ H
such that

F(u) = 〈v, u〉

for all u ∈ H. Furthermore, ‖F‖ = ‖v‖.
Proof By the linearity and continuity of F , ker(F ) is a closed subspace, so
Theorem 2.27 gives a decomposition

H = ker(F )⊕ ker(F )⊥.

If ker(F )⊥ = {0}, then F = 0 and the result is obtained by setting v = 0.
Assume that ker(F )⊥ contains a vector w �= 0. For u ∈ H, note that F(w)u −

F(u)w ∈ ker(F ). Therefore, since w is orthogonal to ker(F ),

0 = 〈w,F(w)u− F(u)w〉
= F(w)〈w, u〉 − F(u)‖w‖2.

Since w �= 0 we can then define

v := F(w)

‖w‖2
w,

which yields the desired relation

F(u) = 〈v, u〉.

The uniqueness of v follows immediately from the positive definiteness of the inner
product.

To see that ‖F‖ = ‖v‖, observe that F(v) = ‖v‖2 implies that ‖F‖ ≥ ‖v‖. On
the other hand, the Cauchy–Schwarz inequality gives

|F(u)| ≤ ‖u‖‖v‖

for all u, so ‖F‖ ≤ ‖v‖. 
�
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Note that the canonical map H′ → H is conjugate-linear rather than linear. One
immediate application of the Riesz lemma is the following association of linear
maps to sesquilinear forms, whose proof is left to Exercise 2.6.

Corollary 2.29. Let η : H ×H → C be a sesquilinear form which is bounded in
the sense that

‖η‖ := sup
v,w �=0

|η(v,w)|
‖v‖‖w‖ <∞.

Then there is a uniquely defined operator T ∈ L(H) such that

η(v,w) = 〈v, T w〉.

The Riesz lemma also allows us to simplify the definition (2.11) of weak operator
convergence in the Hilbert space context. For operators in L(H), Tn → T in the
weak operator sense if and only if

lim
n→∞〈v, Tnw〉 = 〈v, T w〉

for all v,w ∈ H. The weak operator convergence Sk → 0 in Example 2.11 follows
immediately from this formulation.

The identification of elements of H with functionals via the Riesz lemma also
provides a new topology on H, derived from the weak operator topology on H′. For
a sequence {wn} ∈ H, we say that wn → w weakly if

lim
n→∞〈wn, v〉 = 〈w, v〉

for all v ∈ H.

Example 2.30. In L2(R) let fn := χ[n,n+1]. For u ∈ L2(R), Cauchy–Schwarz gives
the estimate

|〈u, fn〉| ≤ ‖uχ[n,n+1]‖2.

Since
∑

n∈Z‖uχ[n,n+1]‖2
2 = ‖u‖2

2 < ∞, this shows that 〈u, fn〉 → 0 as n → ∞.
Hence, fn → 0 weakly even though ‖fn‖2 = 1 for all n. ♦

2.7 Orthonormal Bases

A Hilbert space is called separable if it admits a countable dense subset. For
example, in L2(Rn) we can produce a countable dense set consisting of step
functions built using only rational numbers. Most Hilbert spaces of practical interest
are separable, including all of the cases encountered in this book.
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To simplify the exposition, we will assume that H is infinite-dimensional but
separable throughout this section. The same arguments apply in finite dimensions,
but there are some technicalities, for example in the use of the term “sequence,”
which is normally required to be infinite. The non-separable case requires a more
substantial revision of the definition of a basis, which we will not go into here.

Definition 2.31. A sequence {e1, e2, . . .} ⊂ H is orthonormal if

〈ei, ej 〉 =
{

1, i = j,

0, i �= j.

An orthonormal basis is an orthonormal sequence whose span is dense in H.

Example 2.32. The Fourier basis for the space L2(0, 2π) is given by {φk}k∈Z where

φk(θ) := 1√
2π

eikθ . (2.29)

It is easy to check that the sequence {φk} is orthonormal. To see that it forms a
basis, it is convenient to replace the interval (0, 2π) with the quotient T = R/2πZ.
Functions on T are interpreted as periodic functions on R, so the spaces L2(T) and
L2(0, 2π) are naturally isomorphic.

A standard argument using the Dirichlet kernel shows that the Fourier series of
a function in C1(T) converges uniformly, and hence in L2. Since C1(T) is dense in
L2(T), this implies that {φk} is an orthonormal basis.

A similar argument applies to the n-dimensional torus T
n := R

n/(2πZ)n. The
Fourier orthonormal basis for L2(Tn) is given by {φk}k∈Zn , with

φk(θ) := (2π)−n/2eik·θ .

By restricting and changing coordinates as needed, we can derive from this
construction a Fourier basis for the L2 space of a bounded rectangle in R

n. ♦
Clearly, a Hilbert space that admits an orthonormal basis is separable, because

the set of linear combinations of basis elements with rational coefficients furnishes
a countable dense subset. The converse also holds, as seen in the following:

Theorem 2.33. A separable Hilbert space admits an orthonormal basis (in the
sense defined above).

Proof Assume that {fj } is a countable dense subset of H. For each n ∈ N, an
application of the Gram–Schmidt process from linear algebra to the set {f1, . . . , fn}
produces an orthonormal set {e1, . . . , emn} such that

span{f1, . . . , fn} = span{e1, . . . , emn}.

The density of {fj } in H then implies the density of span{ej }. 
�
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Given an orthonormal sequence {ej }∞j=1, let Pn denote the orthogonal projection
onto span{e1, . . . , en}, for each n ∈ N. It is easy to check, by the construction in
Theorem 2.27, that

Pnv =
n∑
j=1

〈ej , v〉ej . (2.30)

To decide if {ej } forms a basis, we need to investigate the convergence of Pnv as
n→∞.

Theorem 2.34 (Bessel’s Inequality). Suppose {ej }∞j=1 is an orthonormal
sequence in H. For v ∈ H,

∞∑
j=1

∣∣〈ej , v〉
∣∣2 ≤ ‖v‖2,

with equality if and only if Pnv→ v as n→∞.

Proof Since Pn is an orthogonal projection,

‖v‖2 = ∥∥v − Pnv
∥∥2 + ∥∥Pnv

∥∥2

= ∥∥v − Pnv
∥∥2 +

n∑
j=1

∣∣〈ej , v〉
∣∣2.

The sum converges as n→∞, because its terms are all positive. Hence,

‖v‖2 = lim
n→∞

∥∥v − Pnv
∥∥2 +

∞∑
j=1

∣∣〈ej , v〉
∣∣2,

from which both claims follow directly. 
�
One immediate application of Bessel’s inequality is the following set of charac-

terizations of a basis.

Theorem 2.35 (Basis Criteria). For an orthonormal sequence {e1, e2, . . .} in a
separable Hilbert space H, the following statements are equivalent:

(a) The sequence is an orthonormal basis.
(b) The only vector perpendicular to ej for all j is zero.
(c) Pn → I in the strong operator sense as n→∞.

Proof To prove that (a) implies (b), note that

{e1, . . .}⊥ = (span{e1, . . .})⊥.
Thus, for a basis {e1, . . .}⊥ = {0}.
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Assume (b) holds. For v ∈ H, the sequence {Pnv} is Cauchy by Bessel’s
inequality, since

∥∥Pnv − Pmv
∥∥2 =

m∑
j=n

∣∣〈ej , v〉
∣∣2

for n ≤ m. Therefore Pnv converges to some limit ṽ. For j ≤ n,
〈
ej , v − Pnv

〉 = 0.

Taking n→∞ then yields

〈ej , v − ṽ〉 = 0,

so that v − ṽ is orthogonal to all of the ej . Hence v = ṽ by (b), and thus Pnv→ v.
For the final claim that (c) implies (a), we simply note that Pnv ∈ span{ej } by

(2.30). 
�
From the combination of Theorems 2.34 and 2.35, we immediately derive the

following result on basis expansion.

Corollary 2.36 (Parseval’s Theorem). If {ej } is an orthonormal basis for H, then
each v ∈ H can be represented as a convergent series

v =
∞∑
j=1

〈ej , v〉ej .

Furthermore,

‖v‖2 =
∞∑
j=1

∣∣〈ej , v〉
∣∣2.

2.7.1 Weak Sequential Compactness

A subset K ⊂ H is called sequentially compact if every infinite sequence in K
admits a subsequence converging in K . (Because the topology is metric, this is
equivalent to the usual topological definition of compactness.) Under the assumption
that H is infinite-dimensional, a closed and bounded subset is not necessarily
compact. For example, an orthonormal basis is contained in the closed unit ball
and admits no convergent subsequence.

This picture changes, however, if we consider weak convergence. The following
result could be paraphrased as the statement that a closed and bounded subset of
H is “weakly sequentially compact.” We will exploit the existence result from
Theorem 2.33 to produce a rather simple proof in the case of a separable Hilbert
space.
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Theorem 2.37 (Alaoglu’s Theorem). Suppose {uk} is a sequence in a separable
Hilbert space H satisfying ‖uk‖ ≤ M for all k. Then there exists a subsequence of
{uk} that converges weakly to some w ∈ H with ‖w‖ ≤ M .

Proof Assume that uk satisfies ‖uk‖ ≤ M for each k. Let {ej } be an orthonormal
basis for H. By assumption,

|〈e1, uk〉| ≤ M.

By the Bolzano–Weierstrass theorem, there exists a subsequence {u1,k} such that
〈e1, u1,k〉 converges to some a1 ∈ C as k → ∞. We can then find a further
subsequence 〈e2, u2,k〉 converges to a2, and so on. Setting wk = uk,k gives a
subsequence for which

lim
k→∞〈ej , wk〉 = aj , (2.31)

for each j ∈ N.
The next step is to estimate the coefficients aj to show that they correspond to a

vector in H. By the uniform bound on ‖uk‖,
n∑
j=1

∣∣〈ej , wk〉
∣∣2 ≤ M2,

for all k and n. Taking k→∞ and then n→∞ gives

∞∑
j=1

|aj |2 ≤ M2.

This implies that w := ∑j aj ej is well defined in H and satisfies ‖w‖ ≤ M . By
(2.31),

lim
k→∞〈ej , wk〉 = 〈ej , w〉

for all j . This is sufficient to guarantee weak convergence wk → w (see
Exercise 2.8). 
�

2.8 Exercises

2.1. For normed vector spaces V and W , prove that a linear map T : V → W is
bounded if and only if it is continuous.

2.2. For the Hilbert space completion defined in Section 2.4, show that (2.19)
defines an inner product and that this makes Ṽ a Hilbert space.
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2.3. Show that the countable direct sum defined in (2.20) is a Hilbert space.

2.4. Prove the claim (2.27): For a Hilbert space H and a subset E ⊂ H,

(E⊥)⊥ = span(E).

2.5. For T ∈ L(H), prove that

‖T ‖ = sup
v,w �=0

|〈v, T w〉|
‖v‖‖w‖ .

2.6. Prove Corollary 2.29: Given a bounded sesquilinear form η : H × H → C,
there is a unique bounded operator T such that

η(v,w) = 〈v, T w〉

for all v,w ∈ H.

2.7. In a Hilbert space H, prove that an orthonormal sequence {en} converges
weakly to 0.

2.8. Let {ej } be an orthonormal basis in a Hilbert space H. If w ∈ H and {wn} is a
bounded sequence such that

lim
n→∞〈wn, ej 〉 = 〈w, ej 〉

for each j , prove that wn → w weakly.

2.9. Suppose that A : H→ H is a linear map satisfying

〈Av,w〉 = 〈v,Aw〉

for all v,w ∈ H. Use the uniform boundedness principle to prove thatA is bounded.

2.10. Suppose that P ∈ L(H) satisfies P 2 = P and

〈Pv,w〉 = 〈v, Pw〉

for all v,w ∈ H. Prove that P is an orthogonal projection (as defined in Section 2.6)
onto the range of P .

2.11. The Schur test gives a useful criterion for establishing the boundedness of
operators defined by integral kernels. Suppose that K(·, ·) is a measurable function
on R

2n, and there exists a constant C such that
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∫

Rn

|K(x, y)| dny ≤ C,

∫

Rn

|K(x, y)| dnx ≤ C.

Prove that the operator on L2(Rn) defined by

Tf (x) :=
∫

Rn

K(x, y)f (y) dny

is bounded, with ‖T ‖ ≤ C. [Hint: first use the Cauchy–Schwarz inequality to
estimate |Tf (x)|2, then integrate over x and use Fubini’s theorem to switch the
order of integrations.]

Notes

Metric space topology is covered in most undergraduate analysis texts; a classic
source is Rudin [77, Chapter 2]. An introduction to Lp spaces can be found in
basic treatments of measure theory, such as Folland [31, Chapter 6] or Royden [76,
Chapter 6]. Additional background material on measure theory and integration is
provided in Appendix A.1.

For a more complete introduction to topologies on the space of bounded
operators, we refer the reader to Reed and Simon [69, Chapter VI]. The simple proof
of uniform boundedness (Theorem 2.13), which was adapted from Sokal [85], uses
a technique from the earliest versions of the proof by Hahn and Banach in 1922.
In 1927, Banach and Steinhaus gave a different version of the proof, relying on the
Baire category theorem (see [69, §III.5]). This route is more efficient, in the sense
that Baire category has other important corollaries, but less direct.

There are many excellent sources for the basic material on Hilbert spaces from
Sections 2.4, 2.6, and 2.7. See, for example, MacCluer [60, Chapter 1] or Stein and
Shakarchi [87, Chapter 4].

While Sobolev spaces are not usually covered in basic functional analysis texts,
this is standard background for PDE theory. See Borthwick [13, Chapter 10] for
a gentle introduction, and Evans [29, Chapter 5] or Gilbarg and Trudinger [36,
Chapter 7] for a more comprehensive treatment. We will develop more aspects of
this theory in Chapters 6 and 9.



Chapter 3
Operators

A fundamental issue in the spectral theory of differential operators is the fact that
an L2 function space is the natural Hilbert space for many applications, and yet L2

functions are not differentiable. Before developing the spectral theory, we must deal
with the basic problem of what it means for a differential operator to act on an L2

space.
One way to circumvent this issue is to consider the inverse of the operator. In

many classical PDE problems, differential operators have integral solution kernels
called Green’s functions. These solution kernels, introduced in the 1830s by George
Green, define operators which are generally bounded in the L2 sense. Early spectral
theory, including David Hilbert’s foundational work in the early 1900s, focused on
the case of integral operators, and thus avoided the technical difficulties associated
with differential operators.

For the development of quantum mechanics, a more direct understanding of the
spectral theory of the differential operator itself was required. John von Neumann
and Marshall Stone addressed this challenge in the late 1920s, by developing the
notion of an “unbounded” operator. The innovation they proposed was to relax
the assumption that the domain of the operator is the full space. Instead, each
operator carries its own domain subspace. This causes some unavoidable technical
complications, which we will discuss in this chapter.

3.1 Unbounded Operators

The operator we will be most concerned with later in the book is the Laplacian,
named for Pierre-Simon Laplace. This is the second order differential operator on
R
n given by
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� := ∂2

∂x2
1

+ · · · + ∂2

∂x2
n

. (3.1)

Let Ω ⊂ R
n be an open subset (with Lebesgue measure implied by default). To

define � as an operator on L2(Ω), where Ω is an open subset of R
n, we need

to assign it a domain. We could choose C∞0 (Ω), for example, or a subspace of
C∞(Ω) defined by imposing some boundary condition. These choices will result in
operators with different spectral properties.

To proceed, we need to refine our usage of the term “operator.” Although this
term generally refers to a linear map between vector spaces, as in Section 2.3, we
will adopt the following more specialized definition in the context of Hilbert spaces.

Definition 3.1. An operator T on a Hilbert space H is a linear map T : D(T ) �→
H, where D(T ) is a dense subspace of H, called the domain of T .

Making the domain specification implicit to the operator helps keep the notation
cleaner, but there is a potential for confusion in the case of differential operators. For
example, although the action of � on C∞(Ω) is unambiguously defined by (3.1),
the Laplacian has many different realizations as an operator on L2(Ω). The choice
of domain will need either to be clear from context or indicated with some alternate
notation.

The density requirement on the domain is a matter of convention. We choose to
include this condition in the definition because most of the results we discuss will
require it as a hypothesis.

In order to simplify the presentation, we focus on operators on a single Hilbert
space H here, but Definition 3.1 could obviously be applied to maps from one
Hilbert space to another. The generalization of the basic results of this section to
the case T : H1 → H2 is straightforward. It simply requires us to distinguish
between the two different norms and inner products.

The definition of a bounded operator from Section 2.3 extends to the context of
Definition 3.1: an operator T is bounded if

sup
v∈D(T )\{0}

‖T v‖
‖v‖ <∞,

and unbounded otherwise. Note that a bounded operator admits a unique continuous
extension to the full space H, since D(T ) is dense. When T is bounded we will
assume that D(T ) = H by default.

The notation L(H) introduced in Section 2.3 is reserved for the algebra of
bounded operators. There is no corresponding notation for unbounded operators, as
they do not form an algebra or even a vector space. Adding or composing unbounded
operators is possible only if the domains line up appropriately. We can always add
a bounded perturbation to an unbounded operator without changing the original
domain, but an unbounded perturbation requires more care. We will discuss various
examples in Chapter 7.
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Example 3.2. Let (X,M, μ) be a σ -finite measure space. For a measurable
function f : X → C, we define the (possibly unbounded) multiplication operator
on L2(X, dμ),

Mf : v �→ f v, (3.2)

with the domain,

D(Mf ) :=
{
v ∈ L2(X, dμ) : f v ∈ L2(X, dμ)

}
.

We claim that this domain is dense; see Exercise 3.12. The argument from
Example 2.8 shows that Mf is bounded if and only if f ∈ L∞(X, dμ), with

‖Mf ‖ = ‖f ‖∞.

♦
Example 3.3. The Fourier transform introduced in Example 2.19 allows us to
conjugate the Laplacian (3.1) to a multiplication operator. For ψ ∈ C∞0 (Rn),
integration by parts shows that

F(−�ψ) = |ξ |2ψ̂(ξ).

Since the F is unitary as a map L2(Rn) to L2(Rn), the operator −� is conjugate
to the multiplication operator M|ξ |2 . (It is traditional to include a minus sign with
� in many applications, and the operator −� is also commonly referred to as the
Laplacian.)

If the domain of M|ξ |2 is defined as in Example 3.2, then the corresponding
domain for −� is

D(−�) =
{
f ∈ L2(Rn) : |ξ |2f̂ ∈ L2(Rn)

}
.

This is the Sobolev space H 2(Rn) defined in Section 2.5. ♦

3.2 Adjoints

Let us first limit our attention to the bounded case. Given v ∈ H and T ∈ L(H), we
can define a bounded functional u �→ 〈v, T u〉. The Riesz lemma (Theorem 2.28)
then yields a unique vector w such that

〈v, T u〉 = 〈w, u〉,



38 3 Operators

for u ∈ H. The adjoint of T is the map T ∗ : v �→ w, which is easily seen to be
linear. In other words, T ∗ is the unique linear operator such that

〈v, T u〉 = 〈T ∗v, u〉, (3.3)

for all u ∈ H. From the formula for the operator norm developed in Exercise 2.5,
we can see immediately that T ∗ is bounded, with

‖T ∗‖ = ‖T ‖, ‖T ∗T ‖ = ‖T ‖2. (3.4)

Recall from Section 2.4 that a map F ∈ L(H) is an isometry if and only if it
preserves the inner product, i.e.,

〈Fu, Fv〉 = 〈u, v〉.
By the definition of the adjoint, the isometry condition is equivalent to

F ∗F = I. (3.5)

If U ∈ L(H) is unitary, i.e., a bijective isometry, then the condition (3.5) implies
that U−1 = U∗. The converse statement, that U−1 = U∗ implies U is unitary, is
also clear. Therefore, unitarity is equivalent to the conditions

U∗U = I and UU∗ = I. (3.6)

3.2.1 Adjoints of Unbounded Operators

In the unbounded case, we still base the definition of the adjoint on the formula
(3.3), but the issue of domains adds a new consideration. In order to apply the Riesz
lemma, we need the functional 〈v, T (·)〉 to be bounded on D(T ). This may not be
true for all vectors v, which puts a constraint on the domain of T ∗.

When 〈v, T (·)〉 is a bounded functional, the construction of T ∗v works just as
above. Because D(T ) is dense, the functional extends by continuity to all H. The
Riesz lemma thus yields a unique vector, which we take to be T ∗v. This leads us to
make the following:

Definition 3.4. The adjoint of an operator T : D(T )→ H is the unique linear map
T ∗ defined by the condition that

〈v, T u〉 = 〈T ∗v, u〉

for all u ∈ D(T ) and v ∈ D(T ∗), where

D(T ∗) := {v ∈ H : u �→ 〈v, T u〉 is a bounded functional on D(T )
}
. (3.7)
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One potential issue here is that D(T ∗) need not be dense. In fact, it is possible
to have D(T ∗) = {0}. This technicality will be resolved in Section 3.3, when we
will develop a basic criterion for the adjoint to be densely defined, which will be
satisfied for all of the operators considered later in the book.

Example 3.5. For the multiplication operator Mf introduced in Example 3.2, we
have D(M∗

f ) = D(Mf ) and

M∗
f = Mf .

The proof is included in Exercise 3.12. ♦
Example 3.6. On L2[0, 1] consider the operator T := d/dx with domain D(T ) =
C1[0, 1]. For u, v ∈ D(T ), integration by parts gives

〈u, T v〉 = −〈T u, v〉 + u(1)v(1)− u(0)v(0).

The pairing v �→ 〈T u, v〉 clearly extends to a continuous functional on L2(0, 1),
whereas the evaluation map v �→ v(x0) does not. The boundedness of the functional
v �→ 〈u, T v〉, which is required for u ∈ D(T ∗), thus implies the boundary
conditions u(0) = u(1) = 0.

We claim that the full adjoint domain is

D(T ∗) = {f ∈ AC[0, 1] : f (0) = f (1) = 0, f ′ ∈ L2[0, 1]}, (3.8)

where AC[0, 1] denotes the space of absolutely continuous functions. From the
Lebesgue differentiation theory (see, e.g., [87, §3.2, Thm. 3.11]), we recall that for
f ∈ AC[0, 1], we have that f is differentiable a.e., f ′ ∈ L1[0, 1], and

f (x) = f (0)+
∫ x

0
f ′ dt (3.9)

for all x ∈ [0, 1]. Conversely, for g ∈ L1(0, 1) the function defined by

f (x) :=
∫ x

0
g dt

is absolutely continuous, with f ′ = g a.e.
Suppose that a function f ∈ AC[0, 1] satisfies f (0) = f (1) = 0 and f ′ ∈

L2[0, 1]. For φ ∈ C1[0, 1], the product φf is also absolutely continuous, so (3.9)
implies that

∫ 1

0
(φf )′ dx = 0,
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by the endpoint condition on f . Therefore,

〈f, T φ〉 = 〈−f ′, φ〉

for all φ ∈ D(T ). By the assumption that f ′ ∈ L2(0, 1), this shows that f ∈ D(T ∗)
and

T ∗f = −f ′.

To prove the converse statement, assume that f ∈ D(T ∗) and set g = T ∗f . By
the definition of T ∗, we have

〈f, T φ〉 = 〈g, φ〉. (3.10)

for all φ ∈ D(T ). The function g is integrable, because g ∈ L2[0, 1] and [0, 1] is
compact. We can thus define a function h ∈ AC[0, 1] by

h(x) :=
∫ x

0
g(t) dt,

satisfying h′ = g a.e. Applying (3.9) to the product hφ gives

∫ 1

0
(hφ)′ dt = h(1)φ(1),

and therefore,

〈g, φ〉 + 〈h, φ′〉 = h(1)φ(1).

By (3.10), it follows that

〈f + h, T φ〉 = h(1)φ(1) (3.11)

for all φ ∈ D(T ).
Setting φ ≡ 1 in (3.11) shows that h(1) = 0, and thus

f + h ∈ range(T )⊥.

Since range(T ) = C[0, 1], which is dense in L2(0, 1), range(T )⊥ = {0}. Therefore
f = −h, implying that f is absolutely continuous, f ′ ∈ L2(0, 1) and f (0) =
f (1) = 0.

This completes the justification of (3.8). We will consider the calculation of
D(T ∗) for some other choices of D(T ) in Exercise 3.1. ♦
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We conclude this section by noting a basic relationship between the range of an
operator and the kernel of its adjoint.

Lemma 3.7. For an operator T on a Hilbert space H,

ker(T ∗) = range(T )⊥.

This is a standard fact in linear algebra, and the argument is essentially the same as
in finite dimensions. The proof is left to Exercise 3.3.

3.3 Closed Operators

Domains of operators are often difficult to specify precisely, and we frequently need
to consider expanding the given domain of an operator. An operator S is said to be
an extension (of an operator) of T if

D(T ) ⊂ D(S) and S|D(T ) = T .

The standard shorthand for this relationship is

T ⊂ S.

Note that it follows immediately from the definition of the adjoint that if T ⊂ S,
then S∗ ⊂ T ∗.

Because unbounded operators are discontinuous, extensions are not guaranteed
to exist, nor are they necessarily unique. To clarify the situation, it is helpful to
consider the graph of the operator,

Γ (T ) := {(u, T u) : u ∈ D(T )} ⊂ H×H.

Using the graph, we can introduce a notion which sheds light on both the extension
problem and the issue of densely defined adjoints from Section 3.2.

Definition 3.8. An operator is closed if its graph is closed as a subspace of H×H.

Note that the closed graph condition does not require D(T ) to be closed; this
would be the case only if D(T ) = H. The closure of an operator should be thought
of as a weak form of continuity. The statement that “T is closed” means precisely
that if {un} ⊂ D(T ) and both sequences {un} and {T un} are convergent in H, then
lim un ∈ D(T ) and

T
(

lim
n→∞un

)
= lim

n→∞ T un.
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The difference between this and continuity lies in the fact that convergence of {T un}
is part of the hypothesis rather than part of the conclusion. Bounded operators are
therefore automatically closed.

Example 3.9. Let T = d/dx acting on L2(−1, 1) with domain D(T ) = C1[−1, 1].
Although this might seem to be a reasonable choice of domain, T is not closed. For
example, set fε(x) :=

√
x2 + ε for ε > 0. As ε→ 0,

fε(x)→ |x|, f ′ε(x)→ sign(x),

with convergence in L2(−1, 1) in both cases. Since |x| /∈ D(T ), the graph of T is
not closed. ♦
Example 3.10. Consider the multiplication operatorMf introduced in Example 3.2,
with D(Mf ) = {v ∈ L2(X, dμ) : f v ∈ L2(X, dμ)}. To prove closure, consider a
sequence {un} ⊂ D(Mf ) such that

un → u ∈ L2(X, dμ) and f un → w ∈ L2(X, dμ).

By a standard measure theory argument, a convergent sequence in L2 has a
subsequence that converges pointwise almost everywhere. Thus, by passing to
subsequence, we can assume that the convergence un → u and f un → w holds
pointwise almost everywhere. It follows that w = f u almost everywhere, which
implies that u ∈ D(Mf ) and Mfu = w. The operator Mf is therefore closed on
this domain.

From the conjugation of the Laplacian on R
n to a multiplication operator

described in Example 3.3, we can also deduce that −� is closed on the domain
D(−�) = H 2(R). ♦

3.3.1 Closable Operators

One obvious way to try to extend an operator that is not closed is to consider the
closure of its graph. This technique does not always work, however, because the
closure of the graph is not necessarily the graph of an operator. It might, for example,
contain a pair (0, v) with v �= 0.

We say that T is closable if Γ (T ) is the graph of an operator, and define in this
case the closure T by

Γ (T ) = Γ (T ).

Obviously T ⊂ T , so a closable operator admits at least one closed extension. The
converse is also true, as the following result shows.

Lemma 3.11. If an operator T admits a closed extension S, then T is closable and
T ⊂ S.



3.3 Closed Operators 43

Proof Suppose T admits a closed extension S. Then, because Γ (T ) is the smallest
closed set containing Γ (T ),

Γ (T ) ⊂ Γ (S).

It is easy to check that this implies that Γ (T ) is the graph of an operator which is the
restriction of S to a possibly smaller domain. Hence T is closable and T ⊂ S. 
�

We should remark that the hypothesis of Lemma 3.11, the existence of at least
one closed extension, is often taken as the definition of closable. The closure of
an operator could also be defined as its smallest closed extension, without actually
mentioning the graph.

There is a simple relationship between the graph of an operator and the graph of
its adjoint, which proves helpful in analyzing closures. On H⊕H, consider the map

J (v,w) := (w,−v).

Clearly J 2 = −I , and it is easy to check that J is unitary.

Lemma 3.12. For an operator T , the graph of T ∗ is the subspace

Γ (T ∗) = J (Γ (T )⊥). (3.12)

Proof By Definition 3.4, a pair (v,w) is contained in Γ (T ∗) if and only if

〈v, T u〉 = 〈w, u〉 for all u ∈ D(T ).

Since (u, T u) represents a general point in Γ (T ), this is equivalent to the condition
that

(w,−v) ∈ Γ (T )⊥.

In other words,

Γ (T ∗) = J (Γ (T )⊥).


�
Since orthogonal complements are closed, and closure is preserved under the

unitary map J , an immediate consequence of (3.12) is the following:

Corollary 3.13. The graph of the adjoint of an operator is closed.

The formula (3.12) also allows us to clarify the issue noted in the previous section
that the adjoint might not be densely defined.
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Theorem 3.14. An operator T is closable if and only if D(T ∗) is dense, and in this
case

T = T ∗∗.

Proof Suppose D(T ∗) is dense. Then T ∗∗ is well defined, and applying (3.12) to
its graph yields

Γ (T ∗∗) = J (Γ (T ∗)⊥). (3.13)

A second application of (3.12), this time to Γ (T ∗) on the right-hand side of (3.13),
gives

Γ (T ∗∗) = J (JΓ (T )⊥)⊥

= (Γ (T )⊥)⊥

= Γ (T ).

This shows that T is closable with T = T ∗∗.
To prove the converse statement, suppose that D(T ∗) is not dense. By (2.27) this

implies that D(T ∗)⊥ �= {0}, so there exists a nonzero vector v ∈ D(T ∗)⊥. Note that
(v, 0) is orthogonal to Γ (T ∗), which implies that

(0,−v) ∈ J (Γ (T ∗)⊥).

The set JΓ (T ∗)⊥ is equal to Γ (T ) by (3.12) and (2.27), so (0,−v) ∈ Γ (T ). Since
v �= 0, this shows that Γ (T ) is not the graph of an operator, and therefore T is not
closable. 
�

3.3.2 Closed Graph Theorem

We noted above that a bounded operator is trivially closed. The following theorem
gives a partial converse statement, requiring the extra assumption that the domain is
the full Hilbert space.

Theorem 3.15 (Closed Graph Theorem). Suppose T is an operator on H with
D(T ) = H. Then T is bounded if and only if it is closed.

Proof The forward implication follows by continuity, so we assume that T is
closed and D(T ) = H. Our first goal is to show that D(T ∗) is closed.

Suppose that {vn} ⊂ D(T ∗) is a sequence such that vn → v ∈ H. By the
definition of the adjoint,

〈T ∗vn,w〉 = 〈vn, T w〉, for all w ∈ H. (3.14)
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Consider {〈T ∗vn, ·〉}∞n=1 as a family of functionals in H′. The family is pointwise
bounded, because, for each w ∈ H,

sup
n
|〈T ∗vn,w〉| = sup

n
|〈vn, T w〉|

≤ ‖Tw‖ sup
n
‖vn‖

<∞.

Hence, by the uniform boundedness principle (Theorem 2.13),

M := sup
n
‖T ∗vn‖ <∞.

Since vn → v, it follows from (3.14) that

|〈v, T w〉| ≤ ‖w‖ lim sup
n→∞

‖T ∗vn‖

≤ M‖w‖

for all w ∈ H. Therefore v ∈ D(T ∗) by (3.7), and hence D(T ∗) is closed.
Since D(T ∗) is also dense by Theorem 3.14, we have D(T ∗) = H and the

relation

〈T v,w〉 = 〈v, T ∗w〉

holds for all v,w ∈ H. Now consider the family of linear functionals {〈T v, ·〉 :
‖v‖ = 1}. This family is pointwise bounded, because

sup
‖v‖=1

|〈T v,w〉| = sup
‖v‖=1

|〈v, T ∗w〉| ≤ ‖T ∗w‖,

for w ∈ H. Therefore, by the uniform boundedness principle,

‖T ‖ := sup
‖v‖=1

‖T v‖ <∞.


�
One straightforward corollary of the closed graph theorem is the Heiliger–

Toeplitz theorem, which says that a self-adjoint operator with domain H is bounded.
This result can also be derived directly from the uniform bounded principle, as seen
in Exercise 2.9.
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3.3.3 Invertibility

For bounded operators, the appropriate definition of invertibility is clear, because
L(H) forms an algebra. We say that T ∈ L(H) is invertible if there exists T −1 ∈
L(H) such that T −1T = I and T T −1 = I . Because L(H) is associative, these
conditions determine T −1 uniquely.

For unbounded operators, it makes logical sense to allow unbounded inverses.
However, our applications will in fact require the inverse to be bounded, and there
is no standard convention either way. To avoid potential confusion, we adopt the
following terminology:

Definition 3.16. An operator T on H has a bounded inverse if there exists T −1 ∈
L(H) such that T T −1 = I on H and T −1T = I on D(T ).

One important application of the closed graph theorem is the fact (alluded to in
Section 2.3) that for a bounded operator the existence of an inverse is sufficient to
guarantee that the inverse is bounded.

Theorem 3.17 (Inverse Mapping Theorem). An operator has a bounded inverse
if and only if it is closed and bijective. In particular, for bounded operators
invertibility is equivalent to bijectivity.

Proof Assume that T has a bounded inverse T −1. The graphs of T and T −1 are
related by transposition, so T is closed because T −1 is closed. The conditions that
T T −1 = I on H and T −1T = I on D(T ) imply that T is bijective as a map
D(T )→ H.

Conversely, suppose that T is closed and bijective. Bijectivity implies that T −1

exists as a linear map H → D(T ). As above, T −1 is closed because T is closed.
Therefore T −1 is bounded by the closed graph theorem. 
�

The existence of a bounded inverse can be expressed in terms of norm estimates.
We will say that the operator T is bounded away from zero if there exists a constant
c > 0 such that

‖T v‖ ≥ c‖v‖ (3.15)

for all v ∈ D(T ).
Theorem 3.18. An operator has a bounded inverse if and only if it is closed,
bounded away from zero, and its range is dense in H.

This result is obvious in one direction: If T has a bounded inverse T −1, then
range(T ) = H and the boundedness of T −1 implies

‖v‖ ≤ ‖T −1‖‖T v‖

for all v ∈ D(T ). For the proof of the converse statement see Exercise 3.4.
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3.4 Symmetry and Self-adjointness

For matrices, the terms “symmetric” and “self-adjoint” are synonymous. A real
symmetric matrix A satisfies At = A, where the superscript denotes the transpose.
In the complex case the corresponding symmetry condition is At = A, which is also
called Hermitian. In either the real or complex case, the condition is that A is equal
to its adjoint with respect to the Euclidean inner product.

In the theory of unbounded operators, we make a distinction between symmetry
and self-adjointness. The latter term is given a literal interpretation:

Definition 3.19. A operator A is self-adjoint if A∗ = A.

Note that since the domains of operators are implicit in the notation, self-
adjointness requires that D(A∗) = D(A), which means that D(A) must be chosen
precisely so that the definition (3.7) of the adjoint domain reproduces the same
space. A self-adjoint operator is closed, since the adjoint is closed by Corollary 3.13.

It is useful to take a more relaxed interpretation of symmetry, for which the
choice of domain is not so rigid. An operator A is symmetric if

〈Au, v〉 = 〈u,Av〉 (3.16)

for all u, v ∈ D(A). Note that the symmetry of A implies that the functional u �→
〈v,Au〉 is bounded for v ∈ D(A) because

|〈v,Au〉| = |〈Av, u〉|
≤ ‖Av‖‖u‖,

by (3.16) and Cauchy–Schwarz. Therefore, D(A) ⊂ D(A∗). This implies that the
symmetry property is equivalent to

A ⊂ A∗,

and shows in particular that a symmetric operator is closable.
An important class of symmetric operators is the set of positive operators. We

say that A is positive, and write A ≥ 0, if

〈v,Av〉 ≥ 0

for all v ∈ D(A), i.e., the associated quadratic form is positive definite. A positive
operator is necessarily symmetric; see Exercise 3.7 for the proof.

For differential operators, the properties of symmetry and positivity are closely
related to integration by parts.

Example 3.20. Let Ω ⊂ R
n be a bounded open set whose boundary ∂Ω is

piecewise C1. Green’s identity gives the formula
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〈f,−�f 〉 =
∫

Ω

|∇f |2 dnx −
∫

∂Ω

f
∂f

∂ν
dS (3.17)

for f ∈ C2(Ω), where ∂/∂ν denotes the outward normal derivative to ∂Ω . Consider
the classical (homogeneous) boundary conditions,

Dirichlet: f |∂Ω = 0, Neumann:
∂f

∂ν

∣∣∣
∂Ω
= 0.

Either of these will imply that the integral over ∂Ω in (3.17) vanishes, leaving
〈f,−�f 〉 ≥ 0. The (negative) Laplacian is thus a positive operator (and hence
symmetric) on a domain consistingC2(Ω) restricted by either Dirichlet or Neumann
boundary conditions.

It is easy to see that the Laplacian is not closed on a domain defined as a subspace
of C2(Ω). Hence the resulting operators are not self-adjoint. (We will develop self-
adjoint extensions corresponding to the classical boundary conditions in Chapter 6.)
♦

Symmetry alone is not sufficient as a hypothesis for any of the major results
of spectral theory. It should thus be thought of as an intermediate property which
allows us to separate the relatively easy problem of establishing “formal” self-
adjointness, meaning (3.16), from the more difficult task of finding the exact
domain.

3.4.1 Self-adjoint Operators

Let us first consider some operators we have previously encountered, where self-
adjointness is clear.

Example 3.21. On L2[0, 1] consider the operator T := −i d
dx

, with domain given
by

D(T ) = {f ∈ AC[0, 1] : f (0) = f (1), f ′ ∈ L2[0, 1]}.
For f, g ∈ AC[0, 1], integration by parts gives

−i
∫ 1

0
f g′ dt = −if g

∣∣∣
1

0
+ i
∫ 1

0
f ′g dt.

The boundary term vanishes for f, g ∈ D(T ) because of the periodic boundary
condition, implying that

〈f, T g〉 = 〈Tf, g〉,

so T is symmetric.
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We claim that T is self-adjoint. To see this, we must show that D(T ∗) ⊂ D(T ).
Suppose f ∈ D(T ∗), and set g = T ∗f . As in Example 3.6, we set

h(x) :=
∫ x

0
g(t) dt,

and use integration by parts to derive

〈g, φ〉 + 〈h, φ′〉 = h(1)φ(1),

for φ ∈ D(A). Since g = T ∗f , this translates to

〈f − ih, T φ〉 = h(1)φ(1).

Setting φ ≡ 1 implies that h(1) = 0, and thus

f − ih ∈ range(T )⊥. (3.18)

Suppose that u ∈ C1[0, 1] with

∫ 1

0
u dt = 0.

Then u = T v for v ∈ D(A) defined by

v(x) := −i
∫ x

0
u(t) dt.

Hence C1[0, 1] ∩ {1}⊥ ⊂ range(T ), which implies that range(T )⊥ is the one-
dimensional space of constant functions. It thus follows from (3.18) that

f (x) = f (0)+ ih(x).

This implies that f ∈ AC[0, 1], and hence f ∈ D(T ). ♦
Example 3.22. In Example 3.5 we noted that the adjoint of a multiplication operator
Mf on L2(X, dμ) is given by

M∗
f = Mf ,

with the same domain D(Mf ). Therefore Mf is self-adjoint if and only if f is real-
valued almost everywhere. ♦
Example 3.23. As we noted in Example 3.3, the Laplacian −� is unitarily equiv-
alent to M|ξ |2 via the Fourier transform. Example 3.22 shows that M|ξ |2 is
self-adjoint, and we saw in Example 3.3 that the domain D(M|ξ |2) is mapped back
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to H 2(Rn) under the Fourier transform. Therefore, −� is self-adjoint on L2(Rn)

with D(−�) = H 2(Rn). ♦
These cases are very special, in that the exact domain for self-adjointness is

relatively easy to determine. Example 3.20 illustrates the more common situation,
where a natural choice of boundary conditions yields a symmetric operator that
is not self-adjoint. We are then faced with the problem of finding a self-adjoint
extension of the symmetric operator. In general, neither existence nor uniqueness of
such an extension is guaranteed.

Since a symmetric operator is closable, one obvious candidate for a self-adjoint
extension is the closure itself. The class of symmetric operators for which this works
is distinguished in the following:

Definition 3.24. A symmetric operator is essentially self-adjoint if its closure is
self-adjoint.

It is not difficult to see that A is essentially self-adjoint if and only if

A = A∗. (3.19)

We leave the proof to Exercise 3.9. A domain on which a symmetric operator is
essentially self-adjoint is called a core domain. The core is not unique, but the
following result shows that the extension is independent of the choice of core.

Lemma 3.25. For an essentially self-adjoint operator, the closure is the unique self-
adjoint extension.

Proof Suppose thatA is essentially self-adjoint and B is a self-adjoint extension of
A. The closureA is the smallest closed extension ofA, soA ⊂ B. Taking the adjoint
of this relation gives B ⊂ A, because both A and B are self-adjoint. Therefore
B = A. 
�
Example 3.26. Consider the Laplacian −� acting on L2(Rn), with domain equal
to D(A) = C∞0 (Rn). The domain D(−�∗) then consists of functions f ∈ L2(Rn)

such that the map

φ �→ 〈f,−�φ〉

is bounded for φ ∈ C∞0 (Rn). Since

〈f,−�φ〉 = 〈f̂ , |ξ |2φ̂〉,

by the Plancherel theorem, f ∈ D(−�∗) if and only if there exists a function g ∈
L2(Rn) such that g − |ξ |2f̂ is orthogonal to F(C∞0 (Rn)). This implies that g =
|ξ |2f̂ , because the space C∞0 (Rn) is dense in L2(Rn) and the Fourier transform is
unitary.
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This argument shows that f ∈ D(−�∗) if and only if |ξ |2f̂ ∈ L2(Rn). In other
words,

D(A∗) = H 2(Rn),

where H 2(Rn) is the Sobolev space introduced in Example 3.23. Since −� is self-
adjoint on the domain H 2(Rn), we conclude that −� is essentially self-adjoint on
the core C∞0 (Rn). ♦

In Chapter 7 we will study Schrödinger operators, which have the form −� +
V , with V a potential function on R

n acting as a multiplication operator. We can
extend the observation from Example 3.26 to certain Schrödinger operators using
the following:

Lemma 3.27. If A and B are self-adjoint operators and B is bounded, then A+B
is self-adjoint with domain equal to D(A). Furthermore, A + B is essentially self-
adjoint on a core domain for A.

Proof The sum T := A + B is clearly symmetric on the domain D(T ) := D(A).
Suppose that u ∈ D(T ∗), which means that the functional

v �→ 〈u, T v〉

is bounded on D(T ). By writing

〈u,Av〉 = 〈u, T v〉 − 〈u,Bv〉,

and using the fact that B is bounded, we can deduce that u ∈ D(A∗) also. If A is
self-adjoint, then this shows that D(T ∗) ⊂ D(A) = D(T ). Hence T is self-adjoint.

Suppose now that A is essentially self-adjoint on D(A). If u ∈ D(A), then there
exists a sequence {un} such that un → u and Aun converges to Au. Since B is
bounded, Bun also converges to Bu. Therefore the sequence T un converges toAu+
Bu. This shows that u ∈ D(T ) with T u = Au + Bu. Similarly, we can argue that
u ∈ D(T ) implies that u ∈ D(A) with Au = T u − Bu. We can conclude that
D(T ) = D(A) and

T = A+ B.
Since A is self-adjoint by assumption, the self-adjointness of T follows from the
first part of the proof. 
�
Example 3.28. Suppose V ∈ L∞(Rn) is real-valued. Then the multiplication
operator MV is bounded and self-adjoint on L2(Rn) by Examples 3.2 and 3.22.
Therefore, by Lemma 3.27 and Example 3.26, the Schrödinger operator −�+ V is
self-adjoint on H 2(Rn) and essentially self-adjoint on C∞0 (Rn). ♦

In Section 7.2, we will improve the result of Lemma 3.27 by weakening the
restriction to allow B to be unbounded.
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3.4.2 Criteria for Self-adjointness

So far, the only means that we have to verify that a symmetric operator is self-adjoint
is to explicitly check its domain against the definition (3.7) of the adjoint domain.
Although we have given a few examples in Section 3.4.1 where this works, direct
calculation of the adjoint domain is usually difficult. In this section we will develop
some alternative criteria for self-adjointness and essential self-adjointness. Many
applications of these criteria will be seen in later sections.

Consider a symmetric operator A. For v ∈ D(A), the symmetry condition (3.16)
implies that

Im
〈
v, (A− z)v〉 = −(Im z)‖v‖2

for z ∈ C. By an application of the Cauchy–Schwarz inequality, this implies

‖v‖ ≤ ‖(A− z)v‖|Im z| (3.20)

for v ∈ D(A). This is the crucial observation behind the following:

Theorem 3.29. Suppose that A is a symmetric operator, and let z ∈ C be strictly
complex. The following conditions are equivalent:

(a) A is self-adjoint.
(b) A is closed and both A∗ − z and A∗ − z are injective.
(c) Both A− z and A− z have bounded inverses.
(d) Both A− z and A− z are surjective.

Proof Assume that A is self-adjoint and therefore closed. The operators A± z are
injective by (3.20), because A is assumed symmetric. Thus (a) implies (b).

Now assume (b). By Lemma 3.7,

ker(A∗ − z) = range(A− z)⊥. (3.21)

Hence the assumption that A∗ − z is injective implies that range(A − z) is dense.
Since A − z is closed by assumption, and bounded away from zero by (3.20),
Theorem 3.18 shows that A − z has a bounded inverse. Similarly, the assumption
that A∗ − z is injective implies A − z has a bounded inverse. This shows that (b)
implies (c).

It is trivial that (c) implies (d), so it remains to prove that (d) implies (a). Assume
that A − z and A − z are surjective. To prove self-adjointness it suffices to show
D(A∗) ⊂ D(A). Let u ∈ D(A∗). The surjectivity of A− z implies that there exists
v ∈ D(A) such that

(A− z)v = (A∗ − z)u.
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Since Av = A∗v by symmetry, subtracting one side from the other gives

(A∗ − z)(u− v) = 0. (3.22)

The surjectivity of A− z implies that A∗ − z is injective by (3.21), so (3.22) shows
that u = v and hence u ∈ D(A). Thus D(A∗) ⊂ D(A), proving that A is self-
adjoint. 
�

With a fairly straightforward adaptation of the proof of Theorem 3.29, we can
produce a corresponding result for essential self-adjointness.

Theorem 3.30. Suppose that A is a symmetric operator, and let z ∈ C be strictly
complex. The following conditions are equivalent:

(a) A is essentially self-adjoint.
(b) Both A∗ − z and A∗ − z are injective.
(c) Both A− z and A− z have dense range.

Proof If A is essentially self-adjoint, then A∗ is self-adjoint by (3.19). Thus (b)
follows from (a) by Theorem 3.29. And (c) follows immediately from (b) by (3.21).

It remains to show that (c) implies (a). Assume that range(A − z) is dense.
Clearly this also implies that range(A−z) is dense. Furthermore, a simple argument
(Exercise 3.8) shows that A is symmetric. Thus A−z is bounded away from zero by
(3.20). It now follows that A− z has a bounded inverse by Theorem 3.18. The same
reasoning applies to A− z, and Theorem 3.29 then shows that A is self-adjoint. 
�

Theorems 3.29 and 3.30 are perhaps the best general tools we have for defining
self-adjoint operators. We will see ample demonstration of this in later chapters. For
now we will illustrate their usage in some simple one-dimensional cases.

Example 3.31. On L2(0, 1), consider the operator

L0 = −�, D(L0) = C∞0 (0, 1).

Clearly L0 is symmetric, since integration by parts on C∞0 (0, 1) produces no
boundary terms, but it is not essentially self-adjoint. To show this, by Theorem 3.30
it suffices to produce a nonzero element of L2(0, 1) which is orthogonal to the range
of L0 − z for z strictly complex.

For u ∈ C∞[0, 1] and φ ∈ C∞0 (0, 1), we have

〈u, (L0 − z)φ〉 = 〈−u′′ − zu, φ〉. (3.23)

The equation u′′ + zu = 0 admits nontrivial solutions, such as u(x) = ei
√
zx . By

(3.23) these solutions are orthogonal to the range of L0 − z. Therefore L0 is not
essentially self-adjoint. ♦
Example 3.32. The Robin boundary conditions on (0, 1) are given by

a0u(0)− b0u
′(0) = 0, a1u(1)+ b1u

′(1) = 0, (3.24)
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where the coefficients aj , bj are real and (aj , bj ) �= (0, 0) for j = 0, 1. These are
a generalization of the classical conditions introduced in Example 3.20, reducing to
Dirichlet if bj = 0 and Neumann if aj = 0.

Let L = −� on L2(0, 1), with domain D(L) consisting of smooth functions on
[0, 1] satisfying (3.24). For f, g ∈ D(L),

〈f,−�g〉 − 〈−�f, g〉 = (f ′g − g′f )
∣∣∣
1

0

The vectors (f, f ′) and (g, g′) are linearly dependent at 0 and 1, by (3.24), so f ′g−
g′f vanishes at the endpoints. Therefore L is symmetric.

To see that L is essentially self-adjoint, we can use the ODE technique of
variation of parameters to construct the integral kernel for (L− z)−1. For j = 0, 1,
let wj be a nonzero solution of

w′′j + zwj = 0,
[
ajwj + (−1)j+1bjw

′
j

]∣∣
x=j = 0,

where z is strictly complex. Eachwj is a linear combination of the functions e±i
√
zx ,

and is therefore smooth. We claim that the pair w0, w1 is linearly independent.
Otherwise, w0 would satisfy (3.24) at both endpoints. Then, by symmetry,

0 = 〈w0, w
′′
0 〉 − 〈w′′0 , w0〉 = (z− z)‖w0‖2.

Since z is strictly complex, this is not possible for w0 nonzero.
For solutions of a second order ODE, the Wronskian,

W [w0, w1] := w0w
′
1 − w′0w1,

is given by a constant c0. Linear independence implies that c0 �= 0, allowing us to
define the integral kernel,

K(x, y) := 1

c0

{
w0(x)w1(y), x ≤ y,

w0(y)w1(x), x ≥ y.

For f ∈ C∞[0, 1], a simple calculation with the fundamental theorem of calculus
then shows that

u(x) :=
∫ 1

0
K(x, y)f (y) dy

yields a solution of u′′ +zu = f with u ∈ D(L). Hence f lies in the range of L−z.
Since C∞[0, 1] is dense in L2(0, 1), this shows that L − z has dense range. The
same construction applies to L− z, so we conclude that L is essentially self-adjoint
by Theorem 3.30. ♦
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In Example 3.32 we can see the dramatic effect that the choice of extension
could have on the properties of the operator. For any choice of parameters a0, b0
and a1, b1, the Robin Laplacian L is an extension of the positive operator −� with
domain C∞0 (0, 1). Despite the positivity of −� on this smaller domain, not all of
the extensions are positive. Indeed, if we take a0 = a1 = α, b0 = −1, and b1 = 1,
then φ(x) := e−αx lies in D(L) and satisfies Lφ = −α2φ. This shows that we can
choose boundary conditions for which the infimum of 〈φ,Lφ〉/‖φ‖2 is arbitrarily
negative.

3.4.3 Friedrichs Extension

For a positive symmetric operator, we usually look for a self-adjoint extension which
is also positive. The remark at the end of the previous section raises the question of
whether or not this is possible. The answer is clear in the essentially self-adjoint
case, because the closure of a positive operator is easily seen to be positive. In the
general case it is not so obvious, but positive extensions do in fact exist in general.

Kurt Friedrichs solved this problem by developing an extension method based
on the quadratic form u �→ 〈u,Au〉 associated with a positive operator A. Note
that we could always shift a positive operator by a constant, without changing the
domain of the extension. Therefore, the natural context for the Friedrichs method is
a symmetric operator S which is semi-bounded, meaning that there exists a constant
a ∈ R such that

〈u, Su〉 ≥ a‖u‖2 (3.25)

for all u ∈ H.

Theorem 3.33 (Friedrichs Extension). Suppose that S is a symmetric operator
on H which is semi-bounded in the sense of (3.25). Then there exists a self-adjoint
extension of S satisfying the same bound.

Proof By adding a constant to S, if necessary, it suffices to consider the case a = 1,
where S satisfies

〈u, Su〉 ≥ ‖u‖2. (3.26)

Since S is symmetric, (3.26) implies that the sesquilinear form,

Q[u, v] := 〈u, Sv〉, (3.27)

defines an inner product on D(S). Let HQ denote the abstract Hilbert space
completion of D(S) with respect to Q[·, ·], as described in Section 2.4. Elements
of HQ are equivalence classes of sequences in D(S) which are Cauchy with respect
to the norm ‖·‖Q associated with Q[·, ·].
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Our goal is to identify HQ with a subspace of H. We first note that the inclusion
of (D(S),Q[·, ·]) in H given by the identity map is continuous, by (3.26). It
therefore admits a unique extension to a continuous linear map J : HQ → H.

We claim that J is injective. To prove this, suppose that w ∈ HQ and J (w) = 0.
Since D(S) is embedded in HQ, we can find a sequence {vk} ⊂ D(S) such that
vk → w in HQ. By continuity, J (vk)→ J (w) in H as k → ∞. Since J (w) = 0,
and J reduces to the identity on D(S), this implies that

lim
k→∞‖vk‖ = 0. (3.28)

Using the fact that the inner product on HQ is a continuous extension of (3.27), for
u ∈ D(S) we can compute

〈w, u〉HQ
= lim

k→∞Q[vk, u]

= lim
k→∞〈vk, Su〉.

Hence, (3.28) implies that 〈w, u〉HQ
= 0 for all u ∈ D(S). Since D(S) is dense in

HQ, it follows that w = 0.
Using the fact that J is injective, we can interpret HQ as a subspace of H by

identifying w ∈ HQ with J (w) ∈ H. The desired self-adjoint extension A can now
be defined on the domain

D(A) :=
{
u ∈ HQ :

∣∣〈u, v〉HQ

∣∣ ≤ C‖v‖ for all v ∈ HQ

}
. (3.29)

The condition on u in (3.29) implies that v �→ 〈u, v〉HQ
extends to a bounded linear

functional on H. The Riesz lemma then defines a unique element Au such that

〈u, v〉HQ
= 〈Au, v〉, (3.30)

for all v ∈ HQ. It is easy to check that u �→ Au is linear, and (3.30) implies that A
is symmetric. Moreover, (3.27) implies that S ⊂ A.

To see thatA is self-adjoint, we use a variant of the argument from Theorem 3.29.
For u ∈ H, the functional 〈u, ·〉 is continuous on HQ, by (3.26). Since HQ is a
Hilbert space, the Riesz lemma gives w ∈ HQ such that

〈u, v〉 = 〈w, v〉HQ

for all v ∈ HQ. By (3.29), we have w ∈ D(A) and Aw = u. Since u was arbitrary,
this proves that A is surjective. By Lemma 3.7, A∗ is therefore injective.

Now consider u ∈ D(A∗). By the surjectivity of A, we have A∗u = Aw for
some w ∈ D(A). Since A ⊂ A∗, this implies A∗(u − w) = 0. Hence, u = w,
because A∗ is injective, which proves that u ∈ D(A). This establishes the inclusion
D(A∗) ⊂ D(A), proving that A is self-adjoint.
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By (3.30), and the fact that 〈·, ·〉HQ
is a continuous extension of Q[·, ·],

〈u,Au〉 ≥ ‖u‖2

for all u ∈ D(A). 
�
The Friedrichs construction can be applied more generally to construct a self-

adjoint operator from a quadratic form defined on a dense subspace H1 ⊂ H. The
requirements on H1 for this construction are evident in the proof of Theorem 3.33.
We need for H1 to be a Hilbert space with respect to 〈·, ·〉H1

and for the embedding
H1 → H to be continuous, meaning that there exists C > 0 such that

‖u‖ ≤ C‖u‖H1

for all u ∈ H1. We will see some important applications of the Friedrichs extension
in Section 6.1.

3.5 Compact Operators

In 1916 Riesz observed that many qualitative features of the spectrum of integral
operators could be deduced from a property that he referred to as “complete
continuity.” The modern formulation of this condition is the following:

Definition 3.34. An operator T ∈ L(H) is compact if for any bounded sequence
{uk} ⊂ H, the sequence {T uk} has a convergent subsequence.

Another way to say this is that T maps bounded subsets to relatively compact
subsets. The same definition applies also to maps between Banach spaces, but our
focus is on Hilbert space operators.

The most basic example of a compact operator is a bounded operator of finite
rank. If {T uk} is a bounded sequence contained in a finite-dimensional subspace
of H, then the Bolzano–Weierstrass theorem implies that {T uk} has a convergent
subsequence. Thus all bounded finite-rank operators are compact.

It follows directly from Definition 3.34 that the sum of compact operators
is compact. Moreover, if B is a bounded operator and T is compact, then the
continuity of B implies that both BT and T B are compact. We can summarize
these observations as follows:

Lemma 3.35. The set of compact operators on H is an algebra and a two-sided
ideal within L(H).

Alongside these algebraic properties, we have an important analytic result, that
the compact operators form a closed subspace with respect to the operator topology.



58 3 Operators

Theorem 3.36. If {Tn} is a sequence of compact operators on H that converges
(with respect to the operator norm) to a bounded operator T , then T is compact.

Proof Suppose {uk} ⊂ H is a bounded sequence and let M := sup ‖uk‖. Using
the fact that T1 is compact, we can choose a subsequence {u1,k} for which {T1u1,k}
is convergent. Then we can take {u2,k} ⊂ {u1,k} so that {T2u2,k} converges, and
so on. The result is a nested set of subsequences {um,k} for which {Tjum,k}∞k=1 is
convergent as k→∞ for m ≥ j .

Now consider the diagonal subsequence wk := uk,k . We claim that the image
sequence {Twk} is Cauchy. To show this, pick ε > 0. There exists an n such that

‖Tn − T ‖ ≤ ε

by the norm convergence Tn → T . For this value of n,

‖Twk − Twm‖ ≤ 2Mε + ‖Tnwk − Tnwm‖ (3.31)

by the triangle inequality. The sequence {Tjwk}∞k=1 is convergent by the diagonal
construction, and therefore Cauchy as well. Hence there exists N > 0 such that for
k, n ≥ N

‖Tnwk − Tnwm‖ ≤ ε.

Applying this to (3.31) gives

‖Twk − Twm‖ ≤ (2M + 1)ε,

for k, n ≥ N . SinceM is fixed and ε is arbitrary, we conclude that {Twk} is Cauchy,
and hence convergent. 
�

The close connection between compact and finite-rank operators is demonstrated
by the following result. Our proof is limited to separable Hilbert spaces for the sake
of brevity, but the result does extend to the non-separable case.

Theorem 3.37. Let H be a separable Hilbert space. An operator T ∈ L(H) is
compact if and only if there exists a sequence of bounded finite-rank operators {Tn}
such that ‖Tn − T ‖ → 0.

Proof Since bounded finite-rank operators are compact, limits of sequences of such
operators with respect to the operator-norm topology are compact by Theorem 3.36.

To prove the converse, suppose that T is a compact operator. Our goal is to
construct an approximating sequence of finite-rank operators. This is trivial if
dimH <∞ so we assume that dimH = ∞.

By Theorem 2.33, there exists an orthonormal basis {ej }∞j=1 for H. Let Pn be the
orthogonal projection onto the span of {e1, . . . , en} andRn the orthogonal projection
onto {e1, . . . , en}⊥, so that Pn + Rn = I . Clearly PnT is bounded and has finite-
rank, so we can complete the proof by showing that PnT → T .
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For v ∈ H

‖RnT v‖2 =
∞∑

j=n+1

∣∣〈ej , T v〉
∣∣2.

Taking the supremum of both sides over ‖v‖ = 1 shows that ‖RnT ‖ is decreasing
as n → ∞. This means that either ‖RnT ‖ → 0 or ‖RnT ‖ > ε for all n for some
ε > 0. Assume that the latter holds. Then for each n we can choose vn ∈ H some
‖vn‖ = 1 such that

‖RnT vn‖ ≥ ε.

By the compactness of T , the sequence {T vn} admits a convergent subsequence:
T vnk → w ∈ H as k→∞. Then

‖RnkT vnk‖ ≤ ‖Rnkw‖ + ‖Rnk (T vnk − w)‖,

and taking k→∞ gives

ε ≤ lim inf
k→∞ ‖Rnkw‖.

This is a contradiction, because

‖Rnkw‖2 =
∑
j>nk

∣∣〈ej , w〉
∣∣2,

and so ‖Rnkw‖ → 0 by Bessel’s inequality. We conclude that ‖RnT ‖ → 0, which
proves that PnT → T . 
�

Using Theorem 3.37, we can develop an equivalent characterization of compact-
ness, which is sometimes taken as the definition.

Theorem 3.38. A bounded operator T ∈ L(H) is compact if and only if T maps
weakly convergent sequences to convergent sequences.

Proof Suppose first that T is compact and {uk} ⊂ H is a sequence which converges
to w in the weak sense. For each v ∈ H, weak convergence implies a bound

sup
k

|〈uk, v〉| <∞.

Thus, by uniform boundedness (Theorem 2.13), there exists M > 0 such that

‖uk‖ ≤ M

for all k.
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Given ε > 0, Theorem 3.37 implies that there exists a bounded finite-rank
operator Tn such that ‖Tn − T ‖ < ε. Replacing T by Tn thus gives

‖T (uk − w)‖ ≤ ‖Tn(uk − w)‖ + ε(M + ‖w‖). (3.32)

Since Tn is bounded and has finite rank, weak weak convergence uk → w implies
that Tn(uk − w)→ 0 in norm. Thus taking k→∞ in (3.32) gives

lim sup
k→∞

‖T (uk − w)‖ ≤ ε(M + ‖w‖).

This holds for all ε > 0, which proves that T uk → Tw.
To prove the other direction, we assume that T ∈ L(H) maps weakly convergent

sequences to strongly convergent sequences, and let {uk} be a bounded sequence
in H. Alaoglu’s theorem (Theorem 2.37) gives a subsequence {ukj } that converges
weakly to some w ∈ H. By assumption, the fact that ukj − w → 0 in the weak
sense implies the norm convergence T ukj → Tw. 
�

3.5.1 Hilbert–Schmidt Operators

The first compact operators to be studied were integral operators of a specific type,
introduced by David Hilbert and Erhard Schmidt in 1907. Suppose that (X,M, μ)

is a measure space such that L2(X, dμ) is separable (for example, a subset Ω ⊂ R
n

with Lebesgue measure). A Hilbert–Schmidt operator on L2(X, dμ) is an integral
operator defined by

Tf (x) :=
∫

X

K(x, y)f (y) dμ(y), (3.33)

where the integral kernel satisfies

K ∈ L2(X ×X, dμ⊗ dμ).

The integral on the right-hand side of (3.33) is defined for almost every x. To see
this, note that

∫

X

|K(x, y)f (y)| dμ(y) ≤ ‖K(x, ·)‖L2(X)‖f ‖ (3.34)

by the Cauchy–Schwarz inequality. The function |K(·, ·)|2 is integrable on X × X,
so ‖K(x, ·)‖L2(X) <∞ for almost every x by Fubini’s theorem.
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Theorem 3.39. If T is a Hilbert–Schmidt operator with integral kernel K , then

‖T ‖ ≤ ‖K‖L2(X×X),

and T is compact.

Proof The operator-norm estimate follows from squaring (3.34) and integrating:

‖Tf ‖2 =
∫

X

(∫

X

|K(x, y)f (y)| dμ(y)
)2

dμ(x)

≤
∫

X

‖K(x, ·)‖2
L2(X)

‖f ‖2 dμ(x)

= ‖K‖2
L2(X×X) ‖f ‖2.

(3.35)

By the assumption that L2(X, dμ) is separable, there exists an orthonormal basis
{φk}∞k=1. It is easy to check that {φj ⊗ φk}∞j,k=1 gives a corresponding basis for

L2(X ×X, dμ⊗ dμ). In terms of this basis, K has the expansion

K(x, y) =
∞∑

j,k=1

ajkφj (x)φk(y), (3.36)

converging in the L2 sense, where

ajk := 〈φj , T φk〉. (3.37)

By Theorem 2.34,

‖K‖2
L2(X×X) =

∞∑
j,k=1

∣∣ajk
∣∣2. (3.38)

The basis expansion (3.36) provides a natural bounded finite-rank approximation
TN , with integral kernel

KN(x, y) :=
N∑

j,k=1

ajkφj (x)φk(y).

By the estimate used in (3.35),

‖T − TN‖2 ≤ ‖K −KN‖2
L2(X×X)

=
∑
j,k>N

∣∣ajk
∣∣2.

By (3.38), this is the tail of a convergent series, implying that ‖T − TN‖ → 0 as
N →∞. 
�
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Example 3.40. On L2(0, 1), consider the integration operator T , given by

Tf (x) :=
∫ x

0
f (y) dy.

This can be written as an integral operator with the kernel,

K(x, y) =
{

1, x ≤ y,

0, x > y.

Clearly K ∈ L2((0, 1) × (0, 1)), so T is a Hilbert–Schmidt operator and therefore
compact. ♦

If T has an integral kernel K , then the L2 norm of K is called the Hilbert–
Schmidt norm of T . The formula (3.38) allows us to extend this notion to operators
on an abstract (separable) Hilbert space H. We say that T ∈ L(H) is Hilbert–
Schmidt if, for an orthonormal basis {φk},

‖T ‖2
HS :=

∞∑
j,k=1

∣∣〈φj , T φk〉
∣∣2 <∞. (3.39)

(In the case of finite-dimensional matrices, this is called the Frobenius norm.) For
integral operators, (3.38) shows that the sum on the right is independent of the choice
of orthonormal basis. This remains true for any compact operator, although the proof
is not so obvious.

3.6 Exercises

3.1. Let T := d
dx

acting on L2[0, 1], as in Example 3.6. Compute D(T ∗) for the
following choices of domain:

(a) D(T ) := C∞0 (0, 1).
(b) D(T ) := {f ∈ C∞[0, 1] : f (0) = f (1)}.

3.2. Consider the differentiable operator T := −i d
dx

for x ∈ R.

(a) On L2(0,∞), with the domain D(T ) = C∞0 (0,∞), show that T is symmetric
but not essentially self-adjoint.

(b) On L2(R), with the domain D(T ) = C∞0 (R), show that T is symmetric and
essentially self-adjoint.
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3.3. Prove Lemma 3.7: For an operator T : D(T )→ H,

ker(T ∗) = range(T )⊥.

3.4. Complete the proof of Theorem 3.18 by establishing the following: If the
operator T is closed and bounded away from zero, then T is injective and range(T )
is closed.

3.5. For an operator T on a Hilbert space H, let HT be the space D(T ) equipped
with the graph norm,

‖f ‖T :=
(‖f ‖2 + ‖Tf ‖2) 1

2 .

Prove that T is closed if and only if HT is complete with respect to ‖·‖T .

3.6. For a bounded self-adjoint operator A, prove that

‖A‖ = sup
‖v‖=1

|〈v,Av〉|.

[Hint: Use the easily verified identity,

Re〈v,Aw〉 = 1

4

[〈
v + w,A(v + w)〉− 〈v − w,A(v − w)〉

]
,

along with the result of Exercise 2.5.]

3.7. Suppose A is a positive operator. Prove that A is symmetric.

3.8. Prove that the closure of a symmetric operator is symmetric.

3.9. Prove that a closable operator A is essentially self-adjoint if and only if

A = A∗.

3.10. Let T be a symmetric operator with self-adjoint extensions A1 and A2. If
D(A1) ⊂ D(A2), prove that A1 = A2.

3.11. Prove the following variant of Theorem 3.30: If A is a positive operator, then
the following statements are equivalent:

(a) A is essentially self-adjoint.
(b) A∗ + 1 is injective.
(c) A+ 1 has dense range.
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3.12. Let Mf be a multiplication operator on L2(X, dμ), as in Example 3.2, with
f : X→ C measurable and

D(Mf ) :=
{
v ∈ L2(X, dμ) : f v ∈ L2(X, dμ)

}
.

(X is assumed to be σ -finite.)

(a) Prove that the domain D(Mf ) is dense in L2(X, dμ).
(b) Prove that D(M∗

f ) = D(Mf ) and M∗
f = Mf . Hence Mf is self-adjoint if and

only if f is real-valued a.e.

3.13. Given an orthonormal basis {φk}∞k=1 on a Hilbert space H. let T be defined
by

T φk = λkφk,

where {λk} is a bounded sequence. Prove that T is compact if and only if λk → 0.

3.14. Suppose that T is a compact operator on H. Let {Sk} ∈ L(H) be a sequence
of bounded operators such that S∗k → 0 in the strong operator sense. Prove that
T Sk → 0 in the operator norm topology.

Notes

Most of the standard texts on functional analysis or operator theory focus on the
context of bounded operators on Banach spaces. We have chosen to emphasize
unbounded operators from the beginning in order to develop the spectral theory
of differential operators more quickly. This is similar to the approach taken in
Weidmann [94], which gives a more complete treatment of the unbounded operator
theory. For additional background on the unbounded case, see Riesz–Nagy [74,
Chapter VIII], Kato [49, Chapter 5], Reed and Simon [69, Chapter VIII], or
Schmüdgen [80].

Compact operators are a standard topic in any functional analysis text. See, for
example, MacCluer [60, Chapter 4], for a presentation that includes the proof that
the Hilbert–Schmidt norm (3.39) is independent of basis. For an introduction to
compact operators that includes the theory of traces and determinants, see Simon
[83, Chapter 3].

The relationship between operators and quadratic forms, which was used to
define the Friedrichs extension in Section 3.4.3, is developed more systematically in
Kato [49, Chapter 6], Reed and Simon [69, §VIII.6], Schmüdgen [80, Chapter 10],
and Weidmann [94, §5.5].
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There is a complete theory that describes the possible self-adjoint extensions
of a symmetric operator, developed by von Neumann. We have chosen not to get
into this here, because most of our later applications involve essentially self-adjoint
operators. For details, see Reed and Simon [70, §X.1], Schmüdgen [80, Part VI], or
Weidmann [94, Chapter 8].



Chapter 4
Spectrum and Resolvent

David Hilbert was the first to use the term “spectrum” to describe the set of
eigenvalues of a linear operator, in a series of papers starting in 1904. He was
apparently motivated by a loose analogy between the discrete sets of eigenvalues
of certain integral operators and the atomic spectral lines discovered by physicists
in the nineteenth century. Remarkably, Hilbert’s analogy became a direct link just a
few decades later, in Erwin Schrödinger’s landmark calculation of the spectral lines
of the hydrogen atom in 1926. (We will see this calculation in Section 7.4.)

The spectrum of a matrix M is the set of its eigenvalues (another term coined
by Hilbert). Eigenvalues were originally defined by Augustin-Louis Cauchy as the
roots of the characteristic polynomial, q(z) := det(M − zI). Since q(λ) = 0
precisely when M − λI fails to be invertible, each eigenvalue is associated with
an eigenvector, a nonzero vector v for which Mv = λv.

In the operator case, the determinant is not generally defined, so we define the
spectrum in terms of the invertibility of T −z, for z ∈ C. (To simplify the notation, a
number appearing in an operator formula is interpreted as a multiple of the identity,
so that T − z stands for T − zI .) It still makes sense to define eigenvalues in
terms of the existence of an eigenvector. This does not give the full spectrum,
however, because there is no rank-nullity theorem in the infinite-dimensional case.
The operator T −λ could fail to be invertible even when T −λ is injective and hence
there is no eigenvector for λ.

4.1 Definitions and Examples

Let T be an operator on a Hilbert space H in the sense of Definition 3.1, i.e.,
possibly unbounded. An eigenvalue of T is a number λ ∈ C for which there exists
a corresponding eigenvector φ ∈ D(T )\{0}, such that
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T φ = λφ.

The set of eigenvalues is called the point spectrum and denoted by σpt(T ).
Each eigenvalue carries a multiplicity, defined as the dimension of the space of
eigenvectors sharing the same eigenvalue. In linear algebra terminology, this is the
geometric multiplicity. (For the operator definition of algebraic multiplicity, see, for
example, Gohberg and Krein [37, §1.1].)

As noted in the introduction, there might be more to the spectrum than eigenval-
ues. The full definition is as follows:

Definition 4.1. For an operator T , the spectrum σ(T ) is the set of points λ ∈ C for
which T − λ fails to have a bounded inverse. The complement of the spectrum is
the resolvent set, denoted by ρ(T ). The bounded operator (T − z)−1 is called the
resolvent of T at z ∈ ρ(T ).

The “resolvent” is yet another term coined by Hilbert, but the concept had been
introduced earlier by Ivar Fredholm in 1903. We will show in Section 4.2.2 that the
resolvent set is open as a subset of C, and therefore the spectrum is closed.

By the inverse mapping theorem (Theorem 3.17), the existence of a bounded
inverse for T − z requires T to be closed. Therefore, an operator that is not closed
has all of C as its spectrum.

When T is closed, the inverse mapping theorem implies that z ∈ ρ(T ) if and
only if T − z is bijective. Thus there are only two possible ways for a point λ ∈ C

to be contained in the spectrum. Either λ is an eigenvalue, or T − λ is injective but
not surjective.

Example 4.2. Consider the differential operator T := −i d
dx

from Example 3.21,
which was seen to be self-adjoint on L2(0, 1) with the domain D(T ) consisting
of absolutely continuous functions satisfying periodic boundary conditions. This
operator has the obvious eigenfunctions,

φk(x) := e2πikx

for k ∈ Z. The eigenfunctions constitute an orthonormal basis for L2(0, 1), by the
Fourier basis arguments from Example 2.32.

For z ∈ C\(2πZ), we can define the resolvent by

(T − z)−1 : φk �→ (2πk − z)−1φk.

The operator (T − z)−1 is thus bounded, with norm

∥∥(T − z)−1
∥∥ = 1

dist(z, 2πZ)
.
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Hence, ρ(T ) = C\(2πZ) and

σ(T ) = σpt(T ) = 2πZ.

♦

4.1.1 Basic Properties of the Spectrum

For bounded operators we can use the operator norm to estimate the spectrum by
working out a formula for (T − z)−1 when |z| > ‖T ‖.
Lemma 4.3. For a bounded operator T ,

σ(T ) ⊂ {z ∈ C : |z| ≤ ‖T ‖}.

Proof For |z| > ‖T ‖, the series

S :=
∞∑
k=0

z−kT k (4.1)

converges absolutely in L(H), and therefore defines a bounded operator. Clearly T
commutes with S, and the obvious identity,

T S = z(S − I ),

implies that

(T − z)S = −z.

Thus, T − z has a bounded inverse and z ∈ ρ(T ). 
�
In later sections, we will study the resolvent operator in greater detail and use it

to develop a better understanding of the spectrum. Before getting into this analysis,
it is helpful to observe that the resolvent and spectrum behave naturally with respect
to adjoints. Let us define the image of a subset W ⊂ C under complex conjugation
by

W ∗ := {z ∈ C : z ∈ W }.

Theorem 4.4. For a closed operator T ,

σ(T ∗) = σ(T )∗ and ρ(T ∗) = ρ(T )∗.
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If z ∈ ρ(T ), then

[
(T − z)−1]∗ = (T ∗ − z)−1. (4.2)

Proof It suffices to show that ρ(T )∗ ⊂ ρ(T ∗). This will imply ρ(T ∗) ⊂ ρ(T )∗
also, because T ∗∗ = T for a closed operator.

Suppose z ∈ ρ(T ). For v ∈ H and w ∈ D(T ∗),

〈v,w〉 = 〈(T − z)(T − z)−1v,w
〉

= 〈(T − z)−1v, (T ∗ − z)w〉

= 〈v, [(T − z)−1]∗(T ∗ − z)w〉.

Since v and w are arbitrary, this shows that

[
(T − z)−1]∗(T ∗ − z) = I, on D(T ∗).

A similar argument shows that

(T ∗ − z)[(T − z)−1]∗ = I, on H.

Hence z ∈ ρ(T ∗) and (4.2) holds. 
�

4.1.2 Spectrum of a Multiplication Operator

The multiplication operators introduced in Example 3.2 will play a pivotal role in the
spectral theorem developed in Chapter 5, analogous to the role played by diagonal
matrices in linear algebra.

Let us recall how a multiplication operator is defined for a σ -finite measure space
(X,M, μ). Associated with a measurable function f : X→ C is an operator

Mf : u �→ f u,

acting on the Hilbert space L2(X, dμ). This operator is bounded, with norm
‖Mf ‖ = ‖f ‖∞, if and only if f ∈ L∞(X, dμ). Otherwise, Mf is defined as
an unbounded operator on the domain

D(Mf ) :=
{
u ∈ L2(X, dμ) : f u ∈ u ∈ L2(X, dμ)

}
.

The resolvent (Mf − z)−1 at a point z ∈ C will clearly be given by the
multiplication operator corresponding to (f − z)−1, provided this is bounded.
Therefore z ∈ ρ(Mf ) if and only if (f − z)−1 ∈ L∞(X, dμ). The spectrum of
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Mf is thus closely related to the range of f . To describe it precisely, we introduce
the notion of the essential range of f (with respect to μ), defined by

ess-range f :=
{
z ∈ C : μ(f−1(B(z; ε))) > 0 for all ε > 0

}
.

This concept is quite similar to the essential supremum; both notions are unchanged
when the function is modified on a set of measure zero. Note that for a continuous
function on R

n, the essential range (with respect to Lebesgue measure) is not the
range itself, but rather its closure.

Theorem 4.5. For a multiplication operator Mf on L2(X, dμ),

σ(Mf ) = ess-range f.

If z ∈ ρ(Mf ), then

∥∥(Mf − z)−1
∥∥ = 1

dist(z, σ (Mf ))
.

Furthermore, λ ∈ C is an eigenvalue of Mf if and only if μ(f−1{λ}) > 0.

Proof If λ ∈ ess-range(F ), then for all ε > 0, we have |f − λ| < ε on a set of
positive measure. This means that

∥∥(f − λ)−1
∥∥∞ = ∞.

Thus Mf − λ does not have a bounded inverse and hence λ ∈ σ(Mf ). This
establishes

ess-range(f ) ⊂ σ(Mf ). (4.3)

Now suppose that z /∈ ess-range(f ). For r < dist(z, ess-range(f )), this implies
that

μ(f−1B(z; r)) = 0.

In other words, |f (x)− z| ≥ r for almost every x ∈ X, implying that

∥∥(f − z)−1
∥∥∞ ≤ r−1, (4.4)

and hence z ∈ ρ(Mf ). In view of (4.3), this proves

ess-range(f ) ⊂ σ(Mf ).



72 4 Spectrum and Resolvent

From (4.4) we also obtain the resolvent estimate,

∥∥(Mf − z)−1
∥∥ ≤ dist(z, σ (Mf ))

−1. (4.5)

If r > dist(z, ess-range(f )), then |f − z| < r on a set of positive measure, and
therefore

∥∥(f − z)−1
∥∥∞ ≥ r−1.

Thus equality holds in (4.5).
Finally, let us prove the characterization of an eigenvalue. Suppose that φ ∈

L2(X, dμ) satisfies the eigenvalue equation,

(Mf − λ)φ = 0. (4.6)

In other words, (f − λ)φ = 0 almost everywhere on X. If μ(f−1{λ}) = 0, then
(4.6) implies that φ = 0 almost everywhere. Therefore, a nontrivial solution of (4.6)
is possible only if μ(f−1{λ}) > 0. Conversely, if μ(f−1{λ}) > 0, then there exists
a set E ⊂ f−1{λ} with 0 < μ(E) < ∞. Setting φ = χE yields an eigenfunction
for λ. 
�

4.1.3 Resolvent of the Euclidean Laplacian

We saw in Example 3.23 that the Laplacian on R
n is self-adjoint with domain given

by the Sobolev space D(−�) = H 2(Rn). Moreover, −� is unitarily equivalent to
multiplication by |ξ |2, under the Fourier transform. Therefore, by Theorem 4.5,

σ(−�) = [0,∞).

The unitary equivalence to M|ξ |2 also allows us to work out an explicit formula
for the resolvent, which will prove useful later. For convenience, let us write the
spectral parameter as z = −κ2, so that Re κ > 0 corresponds to the resolvent set.
Our goal is to invert the operator −�+ κ2.

By symmetry, the integral kernel of (−� + κ2)−1 should depend only on the
distance between points, so we seek a function G(κ; r) such that

(−�+ κ2)−1f (x) =
∫

Rn

G(κ; |x − y|)f (y) dny, (4.7)

for f ∈ L2(Rn). The integral kernel G is called a Green’s function (or fundamental
solution) for the operator −�+ κ2.
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To solve (4.7), we apply the Fourier transform to the expression on the left,
yielding

F
[
(−�+ κ2)−1f

]
(ξ) = f̂ (ξ)

|ξ |2 + κ2 .

The inverse Fourier transform then gives

(−�+ κ2)−1f (x) = (2π)−
n
2

∫

Rn

eix·ξ f̂ (ξ)

|ξ |2 + κ2 d
nξ. (4.8)

To compute the remaining integral, we write

1

|ξ |2 + κ2
=
∫ ∞

0
e−t (|ξ |2+κ2) dt,

for Re κ2 > 0. Applying this to (4.8) and using the definition of f̂ , give (4.7) with

G(κ; |x − y|) := (2π)−n
∫

Rn

∫ ∞

0
ei(x−y)·ξ−t (|ξ |2+κ2) dnξ dt

(where the change in integration order is justified by Fubini’s theorem). The integral
over ξ is now a standard Gaussian Fourier transform,

∫

Rn

ei(x−y)·ξ−t |ξ |2 dξ =
(π
t

)n
2
e−|x−y|2/4t .

Plugging this back into the expression for G gives

G(κ; r) = (4π)−
n
2

∫ ∞

0
t−

n
2 e−κ2t−r2/4t dt

= (4π)−
n
2 κn−2

∫ ∞

0
t−

n
2 e−t−κ2r2/4t dt.

This expression for G(κ; r) can be compared to a standard formula for the modified
Bessel function [64, Eq. (10.32.10)],

Kν(w) := 1

2

(w
2

)ν ∫ ∞

0
t−ν−1e−t−w2/4t dt,

valid for ν ∈ C and |argw| < π/4. Setting w = κr gives

G(κ; r) = (2π)−
n
2

( r
κ

)1− n
2
Kn

2−1(κr). (4.9)



74 4 Spectrum and Resolvent

Although we assumed Re κ2 > 0 for sake of the calculation, we can now appeal
to the Bessel equation to verify that the formula (4.9) extends to the full resolvent
set Re κ > 0. For n = 3, the formula (4.9) simplifies to

G(κ; r) = 1

4π

e−κr

r
.

The classical Green’s function is the integral kernel for (−�)−1. This can be
recovered from (4.9) by formally taking κ → 0. Using the well-known asymptotics
of Kν(w) as w→ 0, we obtain

G(0; r) =

⎧
⎪⎪⎨
⎪⎪⎩

− 1

2π
log r, n = 2,

1

4
π−

n
2�(n2 − 1)r2−n, n ≥ 3.

The existence of G(0; r) as an integral kernel for (−�)−1 does not contradict the
fact that 0 ∈ σ(−�), because these kernels do not define bounded operators on
L2(Rn).

4.1.4 Discrete Laplacians

As a final class of examples, we consider some operators on the discrete Hilbert
space �2(Zn) that arise in the context of solid-state physics.

To define a discrete analog of the Laplacian, we start by writing the one-
dimensional Laplacian as the limit of a difference quotient,

−�f (x) = lim
h→0

2f (x)− f (x + h)− f (x − h)
h2 .

This formula suggests that the discrete analog of the Laplacian on a regular lattice
should be defined by freezing h at a nonzero value equal to the lattice spacing. For
example, on �2(Zn) we would set h = 1 and define

−�Znf (k) :=
∑

m∈Zn: |k−m|=1

(f (k)− f (m)). (4.10)

Note that the sum is finite. For each k ∈ Z
n, it includes the 2n nearest neighbors in

the lattice. It is clear from the triangle inequality that

‖−�Zn‖ ≤ 4n.
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We can therefore see that −�Zn is self-adjoint just by checking symmetry,

〈f,−�Zng〉 =
∑

k,m:|k−m|=1

f (k)(g(k)− g(m))

=
∑

k,m:|k−m|=1

(f (m)− f (k))g(m)

= 〈−�Znf, g〉.

To determine the spectrum of −�Zn , we use the discrete Fourier transform F :
L2(Tn)→ �2(Zn), given by

F[h](k) = (2π)−n/2
∫

Tn

e−ik·θh(θ) dnθ,

where T
n := (R/2πZ)n. This map is unitary, with inverse given by the Fourier

series,

F∗[f ](θ) = (2π)−n/2
∑
k∈Zn

eik·θf (k).

For g ∈ L2(Tn), we compute

−�ZnF[g](k) =
∑

|k−m|=1

(2π)−n/2
∫

Tn

(
e−ik·θ − e−im·θ

)
g(θ) dnθ

= (2π)−n/2
∫

Tn

e−ik·θ
n∑
j=1

(
2− e−iθj − eiθj

)
g(θ) dnθ

=
n∑
j=1

F[(2− 2 cos θj )g](k).

Thus F gives a unitary equivalence between −�Zn and the multiplication operator
MH acting on L2(Tn), for the function

H(θ) :=
n∑
j=1

(2− 2 cos θj ).

It follows from Theorem 4.5 that

σ(−�Zn) = [0, 4n].
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Discrete operators like −�Zn are frequently used as models for problems in
crystallography. These models are highly simplified from a physical point of view,
and yet their mathematical behavior can be extremely complex. One of the more
famous examples of this complexity arises as a discrete model for the problem of
electrons in a two-dimensional lattice, subject to a constant magnetic field applied
perpendicular to the lattice. Physicist P. G. Harper proposed in 1955 [42] to model
this system using a quantum Hamiltonian operator Hα acting on �2(Z2), given by

Hαu(m1,m2) := u(m1 + 1,m2)+ u(m1 − 1,m2)

+ e−2πiαm1u(m1,m2 + 1)+ e2πiαm1u(m1,m2 − 1),

where α ∈ [0, 1]. The parameter α represents the strength of the magnetic field. It
is easy to check that Hα is bounded and self-adjoint. The α = 0 case reduces to
H0 = �Z2 + 4.

Harper’s model is relatively easy to analyze when α is rational. If α = p/q

with p, q ∈ N, then Hα is periodic in both dimensions, with a fundamental cell of
size q × 1, as illustrated in Figure 4.1. To analyze the spectrum, we can adapt the
discrete Fourier transform to this periodic structure. Define the map U : �2(Z2)→
L2(T2,Cq) by

(Uf )j (θ) = 1

2π

∑

k∈Z2

e−ik·θf (j − 1+ qk1, k2).

Note that the j th component of Uf is the standard Fourier transform of the
restriction of f to the j th site in each cell. This map U is a special case of the
Floquet transform (also called Bloch–Floquet), which is a fundamental tool in
periodic spectral theory.

Fig. 4.1 Fundamental cell
for Hα when q = 5

It is straightforward to check that U is unitary. To define its inverse, we write

U∗g(m1,m2) = 1

2π

∫

T2
eikθ1+im2θ2gj (θ) d

2θ,

where m1 = j −1+qk, with k ∈ Z and j = 0, 1, . . . , q−1. The inversion formula
for Fourier series implies that U∗ = U−1.
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We can work out the spectrum of Hα (still assuming α = p/q) by computing
UHαU

∗. It is helpful to write Hα in terms of shift operators, as

Hα = S1 + S∗1 + e−2πipm1/qS2 + e2πipm1/qS∗2 , (4.11)

where

S1u(m1,m2) := u(m1 + 1,m2), S2u(m1,m2) := u(m1,m2 + 1).

Under conjugation by U , S2 behaves like an ordinary shift of Fourier series,

US2U
∗g(θ) = eiθ2g(θ). (4.12)

The action of S1 is slightly more complicated. Setting m1 = j − 1 + qk as above,
we have

(S1U
∗g)(θ) = U∗g(j + qk)

=

⎧
⎪⎪⎨
⎪⎪⎩

1

2π

∫

T2
eikθ1+im2θ2gj+1(θ) d

2θ, j < q,

1

2π

∫

T2
ei(k+1)θ1+im2θ2g1(θ) d

2θ, j = q.

Applying U then gives

(US1U
∗g)j (θ) =

{
gj+1(θ), j < q,

eiθ1g1(θ), j = q.
(4.13)

By using (4.12) and (4.13) together with (4.11), we can see that U conjugatesHα
to a matrix multiplication operator Ã on L2(T2,Cq). This has the form

[Ãg]i (θ) =
q∑
j=1

Aij (θ)gj (θ),

where A(θ) is the self-adjoint matrix-valued function

A(θ) :=
(

0 eiθ1

Iq−1 0

)
+
(

0 Iq−1

e−iθ1 0

)
+D(θ2),

with Iq−1 the (q − 1)-dimensional identity matrix, and D(θ2) the q × q diagonal
matrix given by

[D(θ2)]ij = 2 cos

(
2π(j − 1)p

q
− θ2

)
δij .



78 4 Spectrum and Resolvent

Using the continuity of A(θ) and compactness of T
2, it is straightforward to

check that Ã− λ is invertible if and only if the 2× 2 matrix A(θ)− λ is invertible
for all θ ∈ T

2. Therefore, for α = p/q we may conclude that

σ(Hα) =
⋃

θ∈T2

σ(A(θ)). (4.14)

For example, in the case p = 1 and q = 2,

A(θ) =
(

2 cos θ2 1+ eiθ1

1+ e−iθ2 −2 cos θ2

)
.

The eigenvalues of A(θ) are

λ±(θ) = ±
√

2+ 2 cos(θ1)+ 4 cos2(θ2),

and therefore

σ(H1/2) =
[−√8,

√
8
]
.

In his 1976 PhD thesis, Douglas Hofstadter [45] performed numerical calcula-
tions which first revealed the intricate structure of σ(Hα) for rational α. His work
included a two-dimensional plot of these spectra, now known as the “Hofstadter
butterfly,” which is illustrated in Figure 4.2.

Fig. 4.2 The spectrum of Hα is plotted horizontally for rational values of α ranging from 0 to 1
on the vertical axis
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This plot illustrates the possibility of extreme instability of the spectrum under
perturbations. One might imagine that the intricate structure of the spectral bands
is an artifact of Harper’s simplified model. However, in 2013 such patterns were
observed in nature by several independent research groups. These experiments
involved graphene, an exotic material consisting of carbon atoms arranged in a two-
dimensional hexagonal lattice that is only one atom thick.

Determining the spectrum ofHα for α irrational is a much more difficult problem
than the calculation used to create Figure 4.2. Hofstadter’s work gave support to an
earlier conjecture by Mark Azbel that σ(Hα) is a Cantor set for irrational values of
α, and thus has measure zero. This conjecture, later popularized by Mark Kac and
Barry Simon as the “ten-martini” problem, was finally proven by Artur Avila and
Svetlana Jitomirskaya in 2009 [6].

4.2 Resolvent

For a matrix, the fact that the spectrum can be defined as the roots of the
characteristic polynomial allows us to apply powerful tools from complex analysis
to spectral questions. For example, the existence of eigenvalues follows from
Liouville’s theorem, via the fundamental theorem of algebra.

For a general operator there is no direct analog of the characteristic polynomial.
However, we can still bring complex analysis into the picture by interpreting the
resolvent as a holomorphic function of the spectral parameter.

4.2.1 Analytic Operator-Valued Functions

To set up our analysis of the resolvent, we first develop some basic theory of analytic
families of bounded operators. Throughout this discussion, we will use Ω to denote
an open, connected subset of C.

Definition 4.6. A map F : Ω → L(H) is analytic if for each z0 ∈ Ω there exists a
sequence of bounded operators {An}∞n=1 ⊂ L(H) and r0 > 0 such that

F(z) =
∞∑
n=1

(z− z0)
nAn, (4.15)

with the series converging absolutely for |z− z0| < r0.

By the root test, the radius of absolute convergence of the power series (4.15) is

r0 =
(

lim sup
n→∞

‖An‖ 1
n

)−1
.
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In particular this means that for T ∈ L(H), the geometric series,

(I − zT )−1 =
∞∑
n=0

znT n, (4.16)

is convergent for |z| < ‖T ‖−1. An operator expansion of the form (4.16) is called
a Neumann series. It is easy to check that (I − zT )−1 is analytic at each point
z0 ∈ {|z| < ‖T ‖−1}, using a geometric series expansion:

(I − zT )−1 = [(I − z0T )− (z− z0)T ]−1

= (I − z0T )
−1

∞∑
k=0

(z− z0)
k
[
T (I − z0T )

−1]k,

for |z− z0| sufficiently small.
As in the scalar case, operator-valued analyticity is related to the existence of a

complex derivative. A function F : Ω → L(H) is holomorphic if the limit

F ′(z) := lim
h→0

F(z+ h)− F(z)
h

, (4.17)

exists (in the operator-norm topology) for each z ∈ Ω . To make the connection
between holomorphic and analytic functions, we can use operator-valued contour
integrals.

To keep this discussion brief, we will only define contour integrals in a weak
sense. We say that F : Ω → L(H) is weakly continuous if the function z �→
〈v, F (z)w〉 is continuous for each v,w ∈ H.

Lemma 4.7. Suppose that F : Ω → L(H) is weakly continuous, and let γ be a
closed, piecewise smooth curve in Ω . There is a unique bounded operator, denoted
by

T :=
∫

γ

F (z) dz (4.18)

such that

〈v, T w〉 =
∫

γ

〈v, F (z)w〉 dz

for all v,w ∈ H. Moreover,

‖T ‖ ≤ �(γ ) sup
z∈γ

‖F(z)‖.



4.2 Resolvent 81

Proof The sesquilinear form,

q(v,w) :=
∫

γ

〈v, F (z)w〉 dz,

is well defined by the weak continuity assumption. Furthermore, since γ is compact,

sup
z∈γ

〈v, F (z)w〉 <∞

for each v,w ∈ H. The uniform boundedness principle (Theorem 2.13) implies that

sup
z∈γ

‖F(z)‖ <∞.

Hence q(·, ·) is bounded as a sesquilinear form, with

‖q(·, ·)‖ ≤ �(γ ) sup
z∈γ

‖F(z)‖. (4.19)

By Corollary 2.29 of the Riesz lemma, it follows that there exists a unique T ∈
L(H) such that

q(v,w) = 〈v, T w〉,

with ‖T ‖ = ‖q(·, ·)‖. 
�
One could extend the definition of (4.18) through an operator-valued formulation

of Riemann sums. This approach allows for considerably less restrictive regularity
assumptions on F and γ . We will not go into the details here, as the weak
formulation given in Lemma 4.7 is sufficient for our applications.

We say that a function F : Ω → L(H) is weakly holomorphic if, for each
v,w ∈ H, the function

z �→ 〈v, F (z)w〉

is holomorphic on Ω . The advantage in using weak notions of holomorphicity
and contour integration is that we can develop the theory using ordinary complex
analysis. The following result shows that we do not lose anything by taking this
approach.

Theorem 4.8. For a function F : Ω → L(H), these conditions are equivalent:

(a) F is analytic.
(b) F is holomorphic.
(c) F is weakly holomorphic.
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Proof To prove that (a) implies (b), one must show that term-by-term differentia-
tion of the power series (4.15) is justified. This argument is essentially the same as
in the scalar case, so we omit the details.

The fact that (b) implies (c) is trivial, so it remains to prove that (c) implies (a).
Assume that F is weakly holomorphic on Ω . Let z0 ∈ Ω . Choose r > 0 so that
B(z0; r) ⊂ Ω , and let γ := ∂B(z0; r). Applying Cauchy’s formula to the scalar
holomorphic function 〈v, F (·)w〉 gives an expansion

〈v, F (z)w〉 =
∞∑
n=0

(z− z0)
nan(v,w), (4.20)

where

an(v,w) := 1

2πi

∫

γ

〈v, F (z)w〉
(z− z0)n+1 dz (4.21)

for n ∈ Z0.
By Lemma 4.7, the coefficient (4.21) can be written as

an(v,w) = 〈v,Anw〉,

where

An := 1

2πi

∫

γ

F (z)

(z− z0)n+1
dz.

Lemma 4.7 also gives the estimate,

‖An‖ ≤ 1

rn
sup
z∈γ

‖F(z)‖,

implying that the power series

Q(z) :=
∞∑
n=0

(z− z0)
nAn

converges absolutely for |z− z0| < r . By (4.20),

〈v, F (z)w〉 = 〈v,Q(z)w〉

for all v,w ∈ H. Hence F(z) = Q(z) for |z − z0| < r , and so F(z) is analytic
at z0. 
�

As a corollary of the proof of Theorem 4.8, we obtain an operator form of
Cauchy’s derivative estimate.
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Theorem 4.9. Suppose F : Ω → L(H) is analytic, and B(z0; r) ⊂ Ω . Then the
derivatives of F at z0 satisfy

∥∥F (n)(z0)
∥∥ ≤ Mrn!

rn

for n ∈ N, where

Mr := sup
|z−z0|=r

‖F(z)‖.

4.2.2 Analyticity of the Resolvent

We can now apply the theory introduced in Section 4.2.1 to the resolvent, and use it
to derive basic properties of the spectrum.

Theorem 4.10. For a closed operator T , the resolvent set ρ(T ) is open and the
function z �→ (T − z)−1 is analytic on each connected component of ρ(T ).

Proof For convenience in this discussion, let us write the resolvent as

R(z; T ) := (T − z)−1. (4.22)

To see that T −z is invertible for z sufficiently close to an arbitrary point z0 ∈ ρ(T ),
we first note that

(T − z)R(z0; T ) = I − (z− z0)R(z0; T ). (4.23)

The right-hand side can be inverted using the Neumann series,

Q(z) :=
∑
n=0

(z− z0)
nR(z0; T )n,

which defines an analytic function for |z − z0| < ‖R(z0; T )‖−1. It follows from
(4.23) that

(T − z)Q(z)R(z0; T ) = I. (4.24)

Similarly, on the domain D(T ) we have

R(z0; T )(T − z) = I − (z− z0)R(z0; T ),
Applying Q(z) to this relation gives

Q(z)R(z0; T )(T − z) = I (4.25)

on D(T ).



84 4 Spectrum and Resolvent

Together, (4.24) and (4.25) imply that

R(z; T ) = Q(z)R(z0; T ).

By the definition of Q(z), this yields an expansion

R(z; T ) =
∞∑
n=0

(z− z0)
nR(z0; T )n+1 (4.26)

for |z− z0| < ‖R(z0; T )‖−1. Thus R(·; T ) is analytic at z0. 
�
Theorem 4.10 has several important corollaries. The first is a simple observation

of the relationship between the norm of the resolvent and the radius of convergence
in the expansion (4.26).

Corollary 4.11. For z ∈ ρ(T ),
∥∥(T − z)−1

∥∥ ≥ 1

dist(z, σ (T ))
. (4.27)

The inequality (4.27) proves to be quite useful in both directions. When the
spectrum is known it provides an easy bound on the resolvent. On the other hand,
if the spectrum is unknown, then estimates of the resolvent can be used to help
locate it. We will see in Section 5.3 that (4.27) becomes an equality in the case of
self-adjoint operators.

The expansion formula (4.26) also yields a relation that makes it easy to compare
the resolvent evaluated at different values if the argument.

Corollary 4.12 (First Resolvent Identity). For an operator T : D(T )→ H, the
resolvents at points z,w ∈ ρ(T ) commute and satisfy

(T − z)−1 − (T − w)−1 = (z− w)(T − z)−1(T − w)−1.

There is also a second resolvent identity: if D(S) = D(T ) and z ∈ ρ(S)∩ ρ(T ),
then

(S − z)−1 − (T − z)−1 = (S − z)−1(S − T )(T − z)−1.

See Exercise 4.1 for the proof.

4.2.3 Spectral Radius

Another application of Theorem 4.10 concerns the spectral radius of an operator T ,
defined by
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r(T ) := sup
z∈σ(T )

|z|.

For a self-adjoint matrix the spectral radius is equal to the norm, and we would
expect these quantities to be closely related for operators as well.

The spectral radius of a bounded operator can be estimated using the analog of a
Laurent series expansion for the resolvent. For T ∈ L(H), replacing z by 1/z in the
Neumann series formula (4.16) gives

(T − z)−1 =
∞∑
n=0

z−n−1T n, (4.28)

for |z| > ‖T ‖.
Corollary 4.13. For a bounded operator T , the spectrum is not empty and the
spectral radius satisfies

r(T ) ≤ ‖T ‖.

Proof The bound on the spectral radius follows immediately from the expansion
(4.28). To prove the first claim, suppose that σ(T ) is empty. This implies that (T −
z)−1 is analytic for all z ∈ C by Theorem 4.10. For v,w ∈ H, the function,

h(z) := 〈(T − z)−1v,w
〉
,

is then entire and satisfies h(z) → 0 as z → ∞ by (4.28). Therefore h ≡ 0 by
Liouville’s theorem. Since this holds for any v,w, it implies that (T − z)−1 = 0 for
all z, which is not possible. 
�

The relationship between the norm of a bounded operator and its spectral radius
was made more precise by I. M. Gelfand [35].

Theorem 4.14 (Gelfand Spectral Radius Formula). For a bounded operator T ,

r(T ) = lim
n→∞‖T

n‖ 1
n .

Furthermore, if T is bounded and self-adjoint then r(T ) = ‖T ‖.
Proof If T n − zn is invertible for z ∈ C and n ∈ N, then T − z is also invertible,
by

(T − z)−1 = (T n − zn)−1(T n−1 + zT n−2 + · · · + zn−1).

Therefore, if λ ∈ σ(T ), then λn ∈ σ(T n), and we have

|λ|n ≤ ‖T n‖.
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Taking the nth root and letting n→∞ show that

r(T ) ≤ lim inf
n→∞ ‖T n‖1

n . (4.29)

On the other hand, consider the function F(z) := (I − zT )−1. This is analytic
for near z = 0 by the Neumann series expansion (4.16), and for 0 < |z| < r(T )−1

by the identity

F(z) = −z(T − 1/z)−1.

Applying Theorem 4.9 to the disk {|z| ≤ a} for a < r(T )−1 gives the estimate

‖T n‖ ≤ Mεa
−n

for n ∈ N. In the limit n→∞ this gives

lim sup
n→∞

‖T n‖1
n ≤ a−1,

for all a < r(T )−1. Hence,

lim sup
n→∞

‖T n‖1
n ≤ r(T ).

In combination with (4.29) this proves that ‖T n‖1
n → r(T ) as n→∞.

If A ∈ L(H) is self-adjoint, then ‖A2‖ = ‖A‖2 by (3.4). Iterating this result, we
see that

∥∥A2k
∥∥ = ‖A‖2k

for k ∈ N. Restricting the limit in the spectral radius formula to the subsequence
n = 2k then gives r(A) = ‖A‖. 
�

For general unbounded operators, there is no analog of Corollary 4.13 or
Theorem 4.14. The spectrum of an unbounded operator could be empty, for
example. However, for a self-adjoint operator A we will see in Chapter 5 that σ(A)
is not empty and that r(A) = ∞ if and only if A is unbounded (see Theorem 5.9).

4.3 Spectrum of Self-adjoint Operators

Certain basic properties of the spectrum of a self-adjoint matrix carry over directly
to the operator case.

Theorem 4.15. The spectrum of a self-adjoint operator is real, and eigenvectors
corresponding to distinct eigenvalues are orthogonal.
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Proof If A is closed, then A − z has a bounded inverse if and only if A − z

is bijective, by Theorem 3.17. Thus, for A self-adjoint and z strictly complex,
Theorem 3.29 implies that z ∈ ρ(A). Hence σ(A) ⊂ R.

Now suppose that φ1 and φ2 are eigenvectors of A, with corresponding eigenval-
ues λ1, λ2. Because the eigenvalues are real,

0 = 〈Aφ1, φ2〉 − 〈φ1, Aφ2〉
= (λ1 − λ2)〈φ1, φ2〉.

Hence λ1 �= λ2 implies that φ1 is orthogonal to φ2. 
�
Another important feature of self-adjoint operators is the fact that each point in

the spectrum is an “approximate eigenvalue” in the following sense.

Theorem 4.16. Let A be a self-adjoint operator. Then z ∈ σ(A) if and only if there
exists a sequence {un} ⊂ D(A) with ‖un‖ = 1 and

lim
n→∞‖(A− z)un‖ = 0.

Proof If z ∈ ρ(A), then (A− z)−1 maps H onto D(A). For u ∈ D(A) we can thus
set u = (A−z)−1v for some v ∈ H. If ‖u‖ = 1, then the boundedness of (A−z)−1

gives

1 ≤ ∥∥(A− z)−1
∥∥‖v‖.

Hence

‖(A− z)u‖ ≥ 1

‖(A− z)−1‖
for all unit vectors u ∈ D(T ). Thus there cannot exist a sequence of unit vectors for
which (A− z)un → 0.

Now assume λ ∈ σ(A). If λ is an eigenvalue, then we can trivially set each un
equal to an eigenvector. So let us assume that λ is not an eigenvalue, meaning that
A− λ is injective but not surjective. In this case, by Lemma 3.7 and the fact that A
is self-adjoint,

range(A− λ)⊥ = {0}.
Hence range(A− λ) is dense in H.

SinceA−λ is injective, there exists a linear mapW : range(A−λ)→ D(A) such
that (A−λ)W = I on range(A−λ). Because range(A−λ) is dense, the operatorW is
unbounded. OtherwiseW could be extended to H by continuity, which would imply
λ ∈ ρ(A). Because W is unbounded there exists a sequence {vn} ⊂ range(A − λ)

such that ‖vn‖ = 1 and

lim
n→∞‖Wvn‖ = ∞. (4.30)
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From the sequence {vn} we construct a sequence of unit vectors,

un := Wvn

‖Wvn‖ ,

satisfying

‖(A− λ)un‖ = 1

‖Wvn‖ .

Then, by (4.30),

lim
n→∞‖(A− λ)un‖ = 0.


�
Results such as Theorem 4.16 are particularly useful for perturbations of an

operator whose spectrum is already known. This situation is common in physical
applications.

Example 4.17. In quantum mechanics, a Schrödinger operator on R
n is a differ-

ential operator of the form −� + V where V is a potential function acting by
multiplication. Suppose that V is a bounded, real-valued function with compact
support. Then multiplication by V defines a bounded operator, and hence −� + V
is self-adjoint on the same domain as −�, namely H 2(Rn).

We can construct approximating sequences for σ(−� + V ) from plane wave
functions eiξ ·x , for ξ ∈ R

n, which satisfy

−�eiξ ·x = |ξ |2eiξ ·x.

Choose ψ ∈ C∞(R) with ψ(t) = 1 for t ≤ 0 and ψ(t) = 0 for t ≥ 1. Then define
the family of cutoffs χk ∈ C∞0 (Rn) by

χk(x) := ψ(|x| − k),

for k ∈ N. For the sequence

fk(x) := χk(x)e
iξ ·x,

we have

(−�+ V − |ξ |2)fk = Vfk − [�,χk]eiξ ·x,

where the commutator,

[�,χk] := �χk − χk�,
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is a first-order differential operator. For k large, |Vfk| = |V |, and we can estimate

∥∥[�,χk]eiξ ·x
∥∥2 ≤ Cξ vol{k ≤ |x| ≤ k + 1}
= O(kn−1).

Thus

∥∥(−�+ V − |ξ |2)fk
∥∥ = O(k(n−1)/2).

Since ‖fk‖2 ≥ volB(0; k), we also have

‖fk‖ ≥ ckn/2.

Therefore fk/‖fk‖ defines an approximate eigenfunction sequence for −� + V ,
with eigenvalue |ξ |2). Theorem 4.16 implies that

[0,∞) ⊂ σ(−�+ V ).

We will refine this argument in Section 5.4, and Schrödinger operators are studied
in greater detail in Chapter 7. ♦

4.4 Spectral Theory of Compact Operators

We saw in Theorem 3.37 that compact operators are operator-norm limits of finite-
rank operators. It is therefore to be expected that the spectral theory of compact
operators will resemble the matrix theory. In this section we establish a number of
spectral properties for compact operators which are clear analogs of linear algebra
results.

The first step is to show that eigenspaces of a compact operator are finite-
dimensional.

Lemma 4.18. If T ∈ L(H) is compact and λ �= 0, then

dim ker(T − λ) <∞.

Proof Suppose that ker(T − λ) is infinite-dimensional. Then there exists an
orthogonal sequence {ej }∞j=1 such that T ej = λej . If λ �= 0 the sequence {λej }
clearly has no convergent subsequence, so T is not compact. 
�

To analyze the resolvent (T − z)−1 for z �= 0, it is equivalent to study the
invertibility of I − zT for z ∈ C. This is the immediate application that we have in
mind for the following result. However, the more general formulation, in terms of
analytic families of compact operators, proves to be quite useful.
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Theorem 4.19 (Analytic Fredholm Theorem). Let H be a separable Hilbert
space, and F : Ω → L(H) an analytic function on an open connected domain
Ω ⊂ C, such that F(z) is compact for each z ∈ Ω . Then either:

(a) I − F(z) fails to be invertible for every z ∈ Ω; or
(b) there exists a discrete subset Γ ⊂ Ω such that I − F(z) is invertible for z ∈

Ω\Γ and ker[I − F(z)] �= {0} for z ∈ Γ .

Proof Let z0 be a point inΩ . Our first goal is to reduce the invertibility of I−F(z)
to a finite-dimensional problem near z0. By the continuity of F(·) there exists some
ε > 0 such that

‖F(z)− F(z0)‖ < 1

2

for |z− z0| < ε. By Theorem 3.37, there exists a finite-rank operator R such that

‖F(z0)− R‖ < 1

2
.

Thus, by the triangle inequality,

‖F(z)− R‖ < 1

for z ∈ B(z0; ε).
The operator

Q(z) := I − F(z)+ R
is therefore invertible by Neumann series for z ∈ B(z0; ε). Furthermore, the fact
that F(z) is analytic implies that Q(z)−1 is analytic. We can see this by deriving the
power series coefficients for Q(z)−1 from those of Q(z), just as in the scalar case.

The invertibility of Q(z) can be exploited to write

I − F(z) = Q(z)− R
= (I − RQ(z)−1)Q(z).

(4.31)

Hence I − F(z) is invertible if and only if I − RQ(z)−1 is invertible. Moreover,
Q(z) maps ker[I − F(z)] bijectively onto ker[I − RQ(z)−1].

Let {e1, . . . , en} be an orthonormal basis for range(R), so that

Rv =
n∑
j=1

〈ej , Rv〉ej .

Define the matrix-valued analytic function M(z) by

[M(z)]ij :=
〈
ei, RQ(z)

−1ej
〉
.
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The determinant

D(z) := det(I −M(z))

is analytic for z ∈ B(z0; ε). Hence either D ≡ 0 or D has a discrete set of zeros in
this disk.

The next step is to show that D(z) = 0 precisely when I − F(z) fails to be
invertible. If D(z) = 0, then there exists a nonzero vector (a1, . . . , an) ∈ C

n such
that

ai =
n∑
j=1

〈
ei, RQ(z)

−1ej
〉
aj . (4.32)

For v :=∑n
j=1 aj ej this is equivalent to

v = RQ(z)−1v.

By (4.31),

(I − F(z))Q(z)v = 0.

Hence D(z) = 0 implies ker[I − F(z)] �= {0}. If, on the other hand, D(z) �= 0,
then (4.32) has no nontrivial solutions. Hence I − RQ(z)−1 is invertible and so is
I − F(z).

At this stage, we have shown that the claimed result holds in a neighborhood of
each point z0 ∈ Ω . The proof is completed with a standard connectivity argument.
The sets

A := {z ∈ Ω : I − F(·) is not invertible in a neighborhood of z
}

and

B := {z ∈ Ω : I − F(·) is invertible in a neighborhood of z

minus a discrete set
}

are open and disjoint by definition, and we have shown that Ω = A ∪ B. Since Ω
is connected, this implies that either Ω = A or Ω = B. 
�

As a corollary of the analytic Fredholm theorem, we obtain the following
characterization of the spectrum of a compact operator.

Theorem 4.20 (Riesz–Schauder Theorem). For a compact operator T on a
separable Hilbert space H, all elements of σ(T )\{0} are eigenvalues of finite
multiplicity, and σ(T ) has no limit point other than possibly 0.
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Proof Clearly I−zT is invertible at z = 0, so applying Theorem 4.19 with F(z) =
zT shows that there exists a discrete subset Γ ⊂ C such that I − zT is invertible on
C\Γ and ker(1− zT ) �= {0} for z in Γ . From the relation

I − zT = −z(T − z−1),

it follows that the points of σ(T )\{0} are the reciprocals of the points in Γ , and that
each of these is an eigenvalue. The multiplicities of these eigenvalues are finite by
Lemma 4.18. 
�

4.4.1 Spectral Theorem for Compact Self-adjoint Operators

Theorem 4.20 does not guarantee the existence of eigenvalues. Although we know
that the spectrum of a compact operator is nonempty, by Corollary 4.13, it is possible
that the spectrum equals {0} and that zero is not an eigenvalue. For example, given
an orthonormal basis {ek}, consider the modified shift operator

T ek = 1

k
ek+1.

If the compact operator is self-adjoint, however, its spectral theory closely resembles
the matrix case.

Theorem 4.21 (Hilbert–Schmidt theorem). Let A be a compact self-adjoint
operator on a separable Hilbert space H. There exists an orthonormal basis {φk}
for H, such that

Aφk = λkφk

for λk ∈ R, with λk → 0 as k→∞.

Proof For each eigenvalue ofA, choose an orthonormal basis for the corresponding
eigenspace. By Theorem 4.15 and the separability of H, the collection of these basis
elements forms a (possibly finite) orthonormal sequence {φk}. If there are infinitely
many eigenfunctions, then the fact that the eigenvalues converge to zero follows
from Theorem 4.20.

Let W be the closure of the span of {φn}. It is easy to check that since A

preserves W and is self-adjoint, it also preserves W⊥. The restriction of A to W⊥
thus defines a new operator A⊥, which is also compact and self-adjoint. Moreover,
A⊥ has no eigenvectors, because the eigenvectors of A were all included in W .
By Theorem 4.20 we conclude that A⊥ has spectral radius r(A⊥) = 0, and it
then follows from Theorem 4.14 that A⊥ = 0. This implies also that W⊥ = {0},
because any nonzero element of W⊥ would be an eigenvector of A with eigenvalue
0. Therefore W = H, implying that {φn} is a basis. 
�

Theorem 4.21 is a special case of the more general spectral theorem to be proven
in Chapter 5. For computations or estimation of the eigenvalues of a compact
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operator, we can adapt yet another basic principle from the matrix case. (See
Section 5.4.3 for a more general operator version.)

Theorem 4.22 (Max–Min Principle for Compact Operators). Suppose that A
is a self-adjoint compact operator on a separable Hilbert space H. If the positive
eigenvalues of A are listed in decreasing order as λ1 ≥ λ2 ≥ . . . , then

λk = max
W∈Λk

{
min

u∈W\{0}
〈u,Au〉
‖u‖2

}
,

where Λk denotes the set of subspaces of H of dimension k.

Proof Let {φk} denote the orthonormal basis vectors corresponding to the eigen-
values {λk}. For u ∈ span{φ1, . . . , φk}, the basis expansion implies that

〈u,Au〉 =
k∑

j=1

λj |〈u, φj 〉|2

≥ λk‖u‖2

(because the eigenvalues are decreasing). Therefore

min
u∈span{φ1,...,φk}\{0}

〈u,Au〉
‖u‖2

≥ λk.

On the other hand, for an arbitrary W ∈ Λk , W ∩ span{φ1, . . . , φk−1}⊥ has
dimension at least 1. Therefore we can choose a nonzero vector w ∈ W ∩
span{φ1, . . . , φk−1}⊥. The fact that w ∈ span{φ1, . . . , φk−1}⊥ implies that w is
a combination of eigenvectors with eigenvalues less than or equal to λk . Thus

〈w,Aw〉 ≤ λk‖w‖2,

implying that

min
u∈W\{0}

〈u,Au〉
‖u‖2 ≤ λk.


�

4.4.2 Hilbert–Schmidt Operators

Suppose that A is a compact self-adjoint operator on L2(Ω), where Ω is an open
subset of Rn. In Section 3.5, we introduced the notion of a Hilbert–Schmidt operator,
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which can be represented with an L2 integral kernel. In terms of the eigenvalues and
eigenvectors given by Theorem 4.21, this kernel has the form,

K(x, y) =
∞∑
k=1

λkφk(x)φk(y), (4.33)

which converges in L2(Ω × Ω). For certain applications, it is useful to be able to
strengthen the convergence of (4.33) to uniform convergence by placing additional
assumptions on A and K .

Theorem 4.23 (Mercer’s Theorem). Suppose Ω ⊂ R
n is a bounded domain and

A is a positive Hilbert–Schmidt operator on L2(Ω). If the integral kernel K(·, ·) is
continuous on Ω ×Ω , then the eigenfunction φk is continuous on Ω if λk > 0, and
the expansion (4.33) converges uniformly on compact sets.

Proof Note that it suffices to assume that λk > 0 for all k, since terms with λk = 0
do not affect the sum (4.33). By the definition of K and the eigenvalue equation,

φk(x) = 1

λk

∫

Ω

K(x, y)φk(y) dy. (4.34)

Since Ω is bounded, the eigenfunction φk is also in L1(Ω), by Fubini’s theorem.
Therefore the continuity of φk follows from (4.34) by the dominated convergence
theorem.

We claim that the positivity of A implies that K(x, x) ≥ 0 for all x ∈ Ω . To see
this, note that if K(x0, x0) < 0 for some x0 ∈ Ω , then by continuity K(·, ·) < 0 on
U × U for some neighborhood U of x0. This would imply

〈χU,AχU 〉 < 0,

contradicting the positivity of A.
For N ∈ N, let us define the partial sum

KN(x, y) :=
N∑
k=1

λkφk(x)φk(y),

with the remainder RN(x, y) = K(x, y) − KN(x, y). Both KN and RN are
continuous. From the L2 expansion,

RN(x, y) :=
∞∑

k=N+1

λkφk(x)φk(y),

we can see that RN(x, y) is the kernel of a positive operator. Therefore RN(x, x) ≥
0, by the same reasoning applied to K .
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We conclude that KN(x, x) ≤ K(x, x) for all N , which then implies

∞∑
k=1

λk|φk(x)|2 ≤ K(x, x). (4.35)

Dini’s theorem from real analysis (see, e.g., Rudin [77, Thm. 7.13]) says that if a
monotonic sequence of continuous functions on a compact set converges pointwise
to a continuous function, then the convergence is uniform. Therefore, the bound
(4.35) implies that

∑
λk|φk(x)|2 converges uniformly on compact sets.

To extend this result off the diagonal, note that the Cauchy–Schwarz inequality
gives

∣∣∣∣
m2∑
k=m1

λkφk(x)φk(y)

∣∣∣∣
2

≤
m2∑
k=m1

λk|φk(x)|2
m2∑
k=m1

λk|φk(y)|2.

Hence, the series

∞∑
k=1

λkφk(x)φk(y)

converges uniformly on compact sets. The limit is continuous, and therefore equal
to K because (4.33) holds in the L2 sense. 
�

4.4.3 Traces

Suppose that A is a compact self-adjoint operator on a separable Hilbert space H.
By Theorem 4.21 there exists an orthonormal basis {φk} consisting of eigenvectors
such that the corresponding eigenvalues {λk} are discrete with λk → 0. The operator
A is said to be trace-class if

∑
k

|λk| <∞,

in which case we define

trA :=
∞∑
k=1

λk. (4.36)

A compact operator T is Hilbert–Schmidt if and only if T ∗T is trace-class, and the
abstract Hilbert–Schmidt norm introduced in Section 3.5 can be computed as

‖T ‖2
HS = tr T ∗T .
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In many spectral theory applications, the compact operator is given by an integral
kernel, and it is particularly useful to be able to express the trace as an integral over
this kernel.

Theorem 4.24. Suppose Ω ⊂ R
n is a bounded domain. If A is a positive Hilbert–

Schmidt operator on L2(Ω), with continuous kernel K(·, ·), then

trA =
∫

Ω

K(x, x) dx,

where A is trace-class if and only if the integral is finite.

Proof Let {λk} and {φk} denote the eigenvalues and eigenfunctions of A. Since
λk ≥ 0, the monotone convergence theorem implies that

∞∑
k=1

λk =
∫

Ω

∞∑
k=1

λk|φk(x)|2 dx.

If K is continuous, it then follows from Mercer’s theorem (Theorem 4.23) that

∞∑
k=1

λk =
∫

Ω

K(x, x) dx.


�

4.5 Exercises

4.1. Prove the second resolvent identity: If S and T are operators with D(S) =
D(T ), then for z ∈ ρ(S) ∩ ρ(T ),

(S − z)−1 − (T − z)−1 = (S − z)−1(S − T )(T − z)−1.

4.2. Using the definition (4.17) for the derivative of an operator-valued function,
prove that, for z ∈ ρ(T ),

dn

dzn
(T − z)−1 = n!(T − z)−n.

4.3. Let A be a closed operator on H and suppose z ∈ ρ(A). If B is a bounded
operator, prove that z ∈ ρ(A+ B) for ‖B‖ sufficiently small.
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4.4. Let {ek}∞k=1 be an orthonormal basis for H, and define the shift operator T by

T ek = ek+1

for k ∈ N.

(a) Show that T has no eigenvalues.
(b) Determine the eigenvalues of T ∗.
(c) Compute σ(T ).

4.5. Let U be a unitary operator on a Hilbert space H. Prove that the spectrum of
U is contained in the unit circle.

4.6. Prove that the spectrum of a positive self-adjoint operator A satisfies σ(A) ⊂
[0,∞).

4.7. Suppose that q(x) is a polynomial.

(a) For T ∈ L(H), prove that

σ(q(T )) = q(σ (T )).

(b) For a self-adjoint operator A ∈ L(H), prove that

‖q(A)‖ = sup
λ∈σ(A)

|q(λ)|.

4.8. (Continuous Functional Calculus) Assume that A ∈ L(H) is self-adjoint and
f ∈ C(σ(A)).

(a) By the Stone–Weierstrass theorem, there exists a sequence of polynomials
{pn(x)} such that pn → f uniformly on σ(A). Use Exercise 4.7 to show that
the limit

f (A) := lim
n→∞pn(A)

exists (with respect to the operator norm) and is independent of the choice of
polynomials.

(b) Prove that

‖f (A)‖ = ‖f ‖∞.

(c) Prove that

σ(f (A)) = f (σ(A)).
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4.9. Suppose that A is a symmetric operator on H and that H has an orthonormal
basis {φk}∞k=1 with φk ∈ D(A) and

Aφk = λkφk

for λk ∈ R.

(a) Prove that A is essentially self-adjoint.
(b) Show that σ(A) is the closure of {λk}.

4.10. On L2(0, 1), consider the Volterra operator

Tf (x) =
∫ x

0
f (t) dt.

(a) Show that T is a Hilbert–Schmidt integral operator and therefore compact.
(b) Show that σ(T ) = {0}.
(c) Compute T ∗ explicitly.
(d) Find the eigenvalues of T ∗T and use this to determine ‖T ‖.

4.11. Suppose that the operator T has compact resolvent, which means that (T −
z0)

−1 is compact for some z0 ∈ ρ(T ).

(a) Prove that (T − z)−1 is compact for all z ∈ ρ(T ).
(b) Prove that σ(T ) is discrete as a subset of C.

4.12. For a closed operator T and ε > 0, the ε-pseudospectrum of T is defined as

Σε(T ) := σ(T ) ∪ {z ∈ ρ(T ) : ∥∥(T − z)−1
∥∥ > 1/ε

}
.

Prove that

Σε(T ) =
⋃

B∈L(H): ‖B‖<ε
σ(T + B).

Notes

The basic definitions of resolvent and spectrum extend to the case of bounded
operators on Banach spaces and play an important role in the theory of C∗-
algebras. Many properties that we have proven for operators on Hilbert spaces,
such as analyticity of the resolvent and the spectral radius formula, extend to the
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Banach space context. Our discussion of these topics draws inspiration from Reed
and Simon [69, §VI.3], but the details are simplified for Hilbert space operators.
Additional background on the spectrum of operators on Banach spaces can be found
in many texts; see, e.g., Arveson [3, Chapter 1], MacCluer [60, Chapter 5], or Simon
[83, Chapter 2].

Our approach to the spectral theory of compact operators, based on the analytic
Fredholm theorem, follows Reed and Simon [69, §VI.5]. Another standard method
is to first show that a compact self-adjoint operator A has either ±‖A‖ as an
eigenvalue, and then argue inductively. See, e.g., Stein and Shakarchi [87, §4.6]
or MacCluer [60, §4.3].



Chapter 5
The Spectral Theorem

The first spectral theorem for matrices was proven by Augustin-Louis Cauchy,
who established that a real symmetric is diagonalizable in 1826. Charles Hermite
extended this result in 1855, proving that a complex self-adjoint n × n matrix
has n real eigenvalues, and there exists an orthonormal basis for Cn consisting of
eigenvectors. The Hilbert–Schmidt theorem (Theorem 4.21) shows that compact
self-adjoint operators are diagonalizable in the same sense.

In the theory of operators, the role of diagonal matrices is played by multipli-
cation operators of the type discussed in Example 3.2. The operator version of
the spectral theorem says that a self-adjoint operator is unitarily equivalent to a
multiplication operator. This was established independently by Marshall Stone and
John von Neumann in the early 1930s. Their development of the spectral theorem
was motivated by quantum mechanics, where self-adjoint operators play a central
role as the representations of physical observables such as position, momentum, and
energy.

We have already seen a special case of the operator spectral theorem in Exam-
ple 3.23, where we noted that the Fourier transform on R

n conjugates the Laplacian
to multiplication by |ξ |2. To illustrate the difference between the multiplication
operator form of the spectral theorem and the matrix version, let us consider the
case of a diagonal operator.

Example 5.1. Suppose that A is a self-adjoint operator on H, with an orthonormal
basis of eigenvectors {φn} such that Aφn = λnφn for λn ∈ R. Assume furthermore
that the eigenvalues λn are distinct. To express A as a multiplication operator, we
define the measure

μ :=
∑
n

δλn, (5.1)
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where δx denotes the point measure at x ∈ R. The unitary mapQ : L2(R, dμ)→ H
defined by

Qf :=
∑
n

f (λn)φn (5.2)

conjugates A to a simple multiplication operator,

Q−1AQ = Mx. (5.3)

Note that if we applied the same construction to an eigenvalue λwith multiplicity
m, the corresponding term in (5.1) would be mδλ. This changes the normalization
of the measure, requiring some adjustment to (5.2) to make Q unitary, but it does
not affect the multiplicity of λ as an eigenvalue of Mx . To accommodate higher
multiplicities in this construction, we would need to take multiple copies of R. ♦

The spectral theorem can be extended from the self-adjoint case to the class
of normal operators, i.e., bounded operators which commute with their adjoints.
In fact, the extension to normal operators could be derived as a special case of a
joint spectral theorem for commuting families of bounded operators. We will limit
our attention to the unbounded self-adjoint case in this chapter, because that is the
relevant context for all of the applications discussed later in the book. Our approach
to the proof involves exploiting the connection between self-adjoint and unitary
operators, a trick due to von Neumann.

5.1 Unitary Operators

In operator theory, the term “functional calculus” refers to the ability to apply a
function to an operator. One possible construction of the continuous functional
calculus for bounded self-adjoint operators was developed in Exercises 4.7 and 4.8,
based on polynomial approximations.

In this section we will give a derivation of the functional calculus for unitary
operators based on Fourier series, and use it to prove a spectral theorem. Recall
from (3.6) that a map U ∈ L(H) is unitary if and only if

U∗U = UU∗ = I.

This formula suggests that the spectrum of a unitary operator should be a subset of
the unit circle S := {|z| = 1} ⊂ C, which is indeed the case (see Exercise 4.5).
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5.1.1 Continuous Functional Calculus

Our first goal is to define f (U) for U unitary and f a continuous function S→ C.
If f has a convergent expansion with respect to the Fourier basis {eikθ }, then we can
define f (U) by replacing eikθ in the series with Uk . This will provide the first step
in our construction.

For a function f ∈ L1(S), define the discrete Fourier coefficients,

f̂ (k) := 1

2π

∫ 2π

0
f (eiθ )e−ikθ dθ (5.4)

for k ∈ Z. If f ∈ C∞(S), then repeated integration by parts gives the estimate

f̂ (k) = O
(
(1+ |k|)−n) (5.5)

for all n ∈ N. In this case, we define f (U) for U ∈ L(H) unitary by the convergent
series

f (U) :=
∑
k∈Z

f̂ (k)Uk. (5.6)

To extend this definition to continuous functions, the crucial fact to establish is
the positivity of f (U) when f ≥ 0. This will allow us to control the convergence
fn(U) → f (U) in the operator topology, assuming that the sequence {fn} ⊂
C∞(S) converges uniformly to f . Recall from Section 3.4 that an operator A is
positive (A ≥ 0) if

〈v,Av〉 ≥ 0, (5.7)

for all v ∈ D(A).
Theorem 5.2 (Continuous Functional Calculus for Unitary Operators). Sup-
pose U ∈ L(H) is unitary. The map f �→ f (U) defined by (5.6) extends uniquely
to a continuous map C(S)→ L(H) with the following properties:

(a) f (U)∗ = f (U).
(b) f (U)g(U) = (fg)(U).
(c) If f ≥ 0, then f (U) ≥ 0.
(d) ‖f (U)‖ ≤ sup |f |.
Proof We first establish the properties in the smooth case, f ∈ C∞(S). Since
U∗ = U−1, taking the adjoint of (5.6) gives

f (U)∗ =
∑
k∈Z

f̂ (k)U−k. (5.8)
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By the definition of the coefficients (5.4),

f̂ (k) = f̂ (−k),

so (5.8) proves (a) for f ∈ C∞(S). For f, g ∈ C∞(S), property (b) follows
immediately from the convolution formula

f̂g(k) =
∑
l∈Z

f̂ (l)ĝ(k − l).

To prove (c) in the case f ∈ C∞(S), f ≥ 0, consider the function

hε(z) :=
√
f (z)+ ε

for ε > 0. This is smooth, so hε(U) is defined by (5.6) and self-adjoint by (a).
Furthermore,

hε(U)
2 = f (U)+ ε

by (b). For v ∈ H, we thus have

〈v, f (U)v〉 = 〈v, (hε(U)2 − ε
)
v
〉

= ‖hε(U)v‖2 − ε‖v‖2

≥ −ε‖v‖2.

Taking ε→ 0 yields 〈v, f (U)v〉 ≥ 0.
Property (d) is a simple consequence of (c). If f ∈ C∞(S) and M := sup |f |,

then M2 − |f |2 ≥ 0. Hence, by (c),

〈
v, (M2 − |f |2(U))v〉 ≥ 0.

Since 〈v, |f |2(U)v〉 = ‖f (U)v‖2 by (a) and (b), we deduce that

‖f (U)v‖ ≤ M‖v‖.

This completes the proof of (a)–(d) in the smooth case. The extension to C(S)
is now straightforward. By the Weierstrass approximation theorem, C∞(S) is dense
in C(S) with respect to the sup norm. Given f ∈ C(S), choose a sequence {fn} ⊂
C∞(S) such that fn → f uniformly on S. The corresponding operator sequence
{fn(U)} is Cauchy in L(H) by (d), and therefore we can define f (U) := lim fn(U).
It is easy to check that f (U) is independent of the choice of {fn}, and that the
properties (a)–(d) are preserved in the limit. 
�
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5.1.2 Spectral Measures

The connection between the continuous functional calculus of Theorem 5.2 and the
multiplication operator form of the spectral theorem is provided by a fundamental
result from measure theory. We will use the functional calculus itself to construct
the measure, by considering functionals C(S)→ C of the form

f �→ 〈v, f (U)v〉, (5.9)

for v ∈ H. By property (c) of Theorem 5.2, this functional is positive in the sense
that f ≥ 0 implies

〈v, f (U)v〉 ≥ 0.

A positive functional on C(S) yields a Borel measure on S, by the following:

Theorem 5.3 (Riesz Representation Theorem). Let X be a compact metric
space. Given a positive linear functional β : C(X) → C, there exists a unique
Borel measure μ on X such that

β(f ) =
∫

X

f dμ

for f ∈ C(X).
We will only sketch the proof of Riesz representation here; the details are

reviewed in Appendix A.1.6. Given a positive functional β, we define the measure
of an open subset Ω ⊂ X by

μ0(Ω) := sup
{
β(f ) : f ∈ C(X), 0 ≤ f ≤ 1, supp f ⊂ Ω

}

The measure of a Borel set A ⊂ X is then given by

μ(A) := inf
{
μ0(Ω) : A ⊂ Ω with Ω open

}
.

Let U ∈ L(H) be unitary. For v ∈ H, Theorem 5.2(c) implies that linear
functional (5.9) is positive on C(S). By Theorem 5.3, there is an associated Borel
measure μv on S such that

〈v, f (U)v〉 =
∫

S

f dμv. (5.10)

This is called the spectral measure associated with v.

Lemma 5.4. Given U and v as above, the map Wv : f �→ f (U)v has a unique
continuous extension to an isometry

Wv : L2(S, dμv)→ H,
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such that

UWv[f (z)] = Wv[zf (z)]. (5.11)

Proof Let f, g ∈ C(S). By the definition of Wv and Theorem 5.2,

〈Wvf,Wvg〉 =
〈
f (U)v, g(U)v

〉

= 〈v, f (U)∗g(U)v〉

= 〈v, f g(U)v〉.

Thus, by the definition (5.10),

〈Wvf,Wvg〉 =
∫

S

f g dμv

= 〈f, g〉L2(S,dμv)
.

It follows easily from the Riesz construction that C(S) is dense in L2(S, dμv); see
Lemma A.11. SinceWv preserves the inner product for functions in C(S), it follows
that Wv has a unique continuous extension to an isometry L2(S, dμv)→ H.

The identity (5.11) follows from the fact that (zf )(U) = Uf (U) by Theo-
rem 5.2(b). 
�

5.1.3 Spectral Theorem for Unitary Operators

The construction of spectral measures leads us directly to the proof of the spectral
theorem in the unitary case. To set up the statement, let us recall some basic features
of multiplication operators from Example 3.5 and Section 4.1.2. Let (X,M, μ) be a
σ -finite measure space. For a multiplication operator Mf acting on L2(X, dμ) with

D(Mf ) =
{
u ∈ L2(X, dμ) : f u ∈ L2(X, dμ)

}
,

the adjoint is given by M∗
f = Mf on the same domain D(M∗

f ) = D(Mf ). Thus,
Mf is unitary if and only if |f | = 1 almost everywhere with respect to μ.

For v ∈ H it is clear from (5.6) that the range of the map Wv from Lemma 5.4 is
the space

Hv := span
{
Ukv, k ∈ Z

}
.

It is possible that Hv = H, in which case the unitary form of the spectral theorem
is already proven by Lemma 5.4. If Hv does not cover all of H, we can iterate the
construction to obtain the following:
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Theorem 5.5 (Spectral Theorem for Unitary Operators). Suppose H is a
separable Hilbert space and U ∈ L(H) is unitary. Then there exists a measure
space (Y, ν), defined as

(Y, ν) = ∪k(S, νk),
where {νk} is a sequence of finite measures, and a unitary map

W : L2(Y, dν)→ H

such that

W−1UW = Mη, (5.12)

where η(z) := z on each copy of S.

Proof Let {wj } be a countable dense subset of H. Applying Lemma 5.4 to the
vector w1 gives a measure ν1 and an isomorphism

W1 : L2(S, dν1)→ H1.

If H1 = H, then this completes the proof. Otherwise, note that U preserves H1 by
definition, and by unitarity U also preserves H⊥

1 .
Next pick the first j such that wj /∈ H1, and let v2 be the orthogonal projection

of thiswj intoH⊥
1 . Applying Lemma 5.4 to v2 yields a measure μ2 and an isometry

W2 with rangeH2. Then, eitherH1⊕H2 = H, or else we take the firstwj /∈ H1⊕H2
and use this to define v3 ∈ (H1 ⊕H2)

⊥ by orthogonal projection.
Continuing this process yields a sequence {vk} (possibly finite) such that wj ∈

⊕kHk for all j . It follows that

H = ⊕kHk.

(See Section 2.4 for the definition of a countable direct sum.) For the measure space
(Y, ν) := ∪k(S, νk), there is a corresponding decomposition

L2(Y, dν) = ⊕kL2(S, dνk).

We thus have a unitary map W : L2(Y, dν) → H given by ⊕kWk . The relation
(5.12) follows from (5.11). 
�

5.2 The Main Theorem

We are now prepared to state and prove the spectral theorem for self-adjoint
operators by means of the unitary version.
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Theorem 5.6 (Spectral Theorem—Multiplication Operator Form). Suppose A
is a self-adjoint operator on a separable Hilbert space H. There exists a countable
collection of finite Borel measures {μk} on R and a unitary map Q : L2(X,μ) →
H, with (X,μ) = ∪k(R, μk), such that

Q−1AQ = Mα

and

D(A) = QD(Mα),

where α : X→ R is given by α(x) := x on each copy of R.

Note that the unitary equivalence of A with Mα implies, by Theorem 4.5, that

σ(A) = ess-range(α),

where the essential range is defined with respect to μ. This means that the measures
μk have support within σ(A).

The remainder of this section is devoted to the proof of Theorem 5.6. For
bounded self-adjoint operators, it is possible to give a proof analogous to that
of Theorem 5.5, by developing the continuous functional calculus directly as in
Exercise 4.8. The advantage of the unitary operator approach is that it allows us to
treat bounded and unbounded self-adjoint operators on an equal footing.

The association between self-adjoint and unitary operators is inspired by the
Cayley transformation

γ (x) := x − i
x + i , (5.13)

which maps the real line to the unit circle S ⊂ C.

Lemma 5.7 (Cayley Transform). If A is self-adjoint, then

U := I − 2i(A+ i)−1

is unitary.

Proof By Theorem 4.4 and the fact that A is self-adjoint,

[
(A+ i)−1]∗ = (A− i)−1.

Therefore,

U∗ = I + 2i(A− i)−1,

and U commutes with U∗ because (A− i)−1 and (A+ i)−1 commute.
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To complete the proof, note that

U∗U = I + 2i(A− i)−1 − 2i(A+ i)−1 + 4(A− i)−1(A+ i)−1.

By the first resolvent formula (Corollary 4.12),

2i(A− i)−1 − 2i(A+ i)−1 + 4(A− i)−1(A+ i)−1 = 0.

Therefore U∗U = I , and so U is unitary. 
�
The Cayley transform allows many results to be translated between the unitary

and self-adjoint cases. In particular, we will now use it to show that the spectral
theorem for self-adjoint operators follows from Theorem 5.5.

Proof of Theorem 5.6 Given A self-adjoint, let U by the corresponding unitary
operator defined by the Cayley transform. From Theorem 5.5 we obtain the
decomposition H = ⊕Hk , with a corresponding sequence of finite measures νk
on S and unitary maps Wk : L2(S, νk)→ Hk , such that

W−1
k UWk = Mz, (5.14)

where z is the complex coordinate on S.
The operator I − U = 2i(A + i)−1 is injective on H. Hence M1−z is injective

on each component of L2(S, νk), by (5.14). It follows that νk{1} = 0 for each k. We
can therefore use the inverse Cayley map,

η(z) := i
1+ z
1− z ,

to define the push-forward of νk to a finite Borel measure on R,

μk := η∗νk.

There is a corresponding unitary map Ψk : L2(R, dμk)→ L2(S, dνk) given by the
pullback φ �→ φ ◦ η.

Let (X,μ) = ∪k(R, μk), and define the unitary map

Q : L2(X, dμ)→ H

by Q = ⊕kQk where

Qk := WkΨk : L2(R, dμk)→ Hk.

On X we define the coordinate function α : X → R which is given by αk(x) = x

on each copy of R indexed by k.
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To prove that Q(D(Mα)) ⊂ D(A), it suffices to consider each copy of R

separately. Suppose that f ∈ D(Mx) ⊂ L2(R, dμk). This implies in particular
that g(x) := (x + i)f (x) lies in L2(R, dμk). Applying the Cayley pullback gives

[Ψkg](z) = (η(z)+ i)f ◦ η(z)

= 2i

1− zf ◦ η(z).

Therefore, by (5.14),

(I − U)Qkg = 2iQkf.

This means that

Qkf = (A+ i)−1Qkg,

which shows that Qkf ∈ D(A). The same argument applies for any k, hence

Q(D(Mα)) ⊂ D(A).

Now suppose that v ∈ Hk ∩D(A), and set w := (A+ i)v. From

v = (A+ i)−1w = 1

2i
(I − U)w

and (5.14) we derive that

W−1
k v = 1

2i
M1−zW−1

k w.

Therefore

MxQ
−1
k v = 1

2i
Ψ−1
k Mη(z)M1−zW−1

k w

= 1

2
Ψ−1
k M1+zW−1

k w

= 1

2
Q−1
k (1+ U)w.

(5.15)

It follows that MxQ
−1
k v ∈ L2(R, dμk), hence v ∈ Qk(D(Mx)). Applying this

argument to each component gives

D(A) ⊂ Q(D(Mα)),

completing the proof that Q(D(Mα)) = D(A).
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Finally, from (5.15) we deduce that on D(A),

QMαQ
−1 = 1

2
(I + U)(A+ i)

= A.


�
Since multiplicity problem makes the notation used in the proof of the spectral

theorem a bit confusing, let us illustrate the construction in a simple case with trivial
multiplicity.

Example 5.8. Consider the operator A = Mx on L2(R). The Cayley transform of
A is U = Mγ(x), where γ was defined in (5.13). This operator admits a cyclic unit
vector v ∈ L2(R) given by

v(x) = 1√
π

1

x + i .

Given f ∈ C(S), we have

〈v, f (U)v〉 =
∫

R

f (γ (x))
π

x2 + 1
dx

=
∫ 2π

0
f (eiθ )

dθ

2π
.

In this case the measure produced by Theorem 5.5 is the standard circle measure
dν = dθ/2π . The unitary map W : L2(S, dν) → H is defined by f �→ f (U)v,
and so is given by

[Wf ](x) = f (γ (x))v(x).

The measure μ = η∗ν, where η is the inverse Cayley map, is given by

dμ = 1

π

dx

x2 + 1
.

The corresponding unitary map Ψ : L2(R, dμ) → L2(S, dν) is the pullback Ψ :
φ �→ φ ◦ η. Thus Q := WΨ is given simply by

Q = Mv,

which is unitary as a map L2(R, dμ) → L2(R). As one might expect, since
we started from a multiplication operator, the conjugation of A by Q is trivial,
Q−1MxQ = Mx . ♦
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5.3 Functional Calculus

We have already made use of a continuous form of the functional calculus for
unitary operators in Section 5.1. One of the principal applications of Theorem 5.6
is a functional calculus for self-adjoint operators which includes the broader class
of Borel functions. We can use it, for example, to define projections that isolate
different parts of the spectrum. There are many applications for the functional
calculus in PDE theory, in creating solution operators for equations. For example,
the heat operator et� maps initial data to a solution of the heat equation on R

n.
The functional calculus developed in this section and the multiplication operator

form of the spectral theorem stated in Theorem 5.6 are essentially equivalent. At
least in the bounded case, one can quickly derive the multiplication operator form
from the functional calculus by means of the Riesz representation theorem on R. The
corresponding argument for unbounded operators is less direct, however, which is
why we have taken the multiplication operator form as the primary version of the
spectral theorem.

The Borel functions on R are the complex-valued functions for which the
preimage of a Borel set is a Borel set. (See Appendix A.1 for background measure
theory definitions.) By the definition of measurability, if g : X → R is measurable
and f : R→ C is Borel, then the composition f ◦ g is measurable.

Let Bb(R) denote the space of bounded Borel functions R → C. Given a self-
adjoint operator A on H and f ∈ Bb(R), we define the bounded operator

f (A) := QMf ◦αQ−1, (5.16)

where Q : L2(X, dμ)→ H and α : X→ R are defined as in Theorem 5.6.

Theorem 5.9 (Functional Calculus). For a self-adjoint operator A, the map
Bb(R)→ L(H) defined by f �→ f (A) has the following properties:

(a) The map is a ∗-homomorphism, meaning

fg(A) = f (A)g(A), f (A)∗ = f (A).

(b) For f ∈ Bb(R),

‖f (A)‖ ≤ sup
λ∈σ(A)

|f (λ)|, (5.17)

with equality if f is continuous.
(c) If fn → f pointwise and sup |fn| ≤ M for all n, then fn(A) → f (A) in the

strong operator sense, i.e., fn(A)v→ f (A)v for all v ∈ H.

Moreover, (5.16) gives the unique map Bb(R)→ L(H) satisfying these conditions.
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Proof Property (a) follows directly from the corresponding results for multiplica-
tion operators, by means of the equivalence (5.16). The adjoint property was covered
in Exercise 3.12.

In Theorem 4.5 we proved that the spectrum of the multiplication operator Mα is
the essential range of α. Therefore, (5.16) implies that

σ(A) = ess-range(α), σ (f (A)) = ess-range(f ◦ α). (5.18)

The second identify implies that

‖f (A)‖ = ‖f ◦ α‖∞,

where the L∞ norm is defined with respect to μ. Moreover, by the first identity in
(5.18), the complement of α−1(σ (A)) in X has measure zero, implying that

‖f ◦ α‖∞ ≤ sup
λ∈σ(A)

|f (λ)|.

This proves the inequality (5.17).
To prove the second claim in (b), suppose that f is continuous. For λ ∈ σ(A),

(5.18) implies that

μ
{
x ∈ X : λ− δ < α(x) < λ+ δ} > 0 (5.19)

for all δ > 0. Since the preimage under f of an open neighborhood of f (λ) is open,
(5.19) implies that

μ
{
x ∈ X : f (λ)− ε < f ◦ α(x) < f (λ)+ ε} > 0

for ε > 0. Hence, f (λ) ∈ σess(f ◦ α). This shows that

f (σ(A)) ⊂ σ(f (A)),

which gives

sup
λ∈σ(A)

|f (λ)| ≤ ‖f (A)‖

when f is continuous.
For (c), under the assumption that fn → f pointwise with sup |fn| ≤ M , the

dominated convergence theorem implies that

lim
n→0

∥∥(fn ◦ α − f ◦ α)v
∥∥ = 0

for each v ∈ L2(X, dμ). By (5.16) this implies that fn(A)v→ f (A)v.
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The final step is to establish uniqueness. Let Bb(R) denote the space of bounded
Borel functions, and suppose that Φ1 and Φ2 are maps Bb(R) → L(H) with the
properties listed in the theorem. These maps agree on linear combinations of the
form

∑
j cjhzj , with zj strictly complex, by property (c). The Stone–Weierstrass

theorem shows that the span of such linear combinations is dense, with respect to
‖·‖∞, in the space of bounded continuous functions Cb(R). Hence Φ1 andΦ2 agree
on Cb(R) by (b).

Now set

A := {f ∈ Bb(R) : Φ1(f ) = Φ2(f )
}
,

which is an algebra of functions by (a) and the linearity of the Φj . Furthermore,
A is an algebra and closed under pointwise limits of uniformly bounded functions.
The characteristic function of a closed interval can be realized as a pointwise limit
of bounded continuous functions. Hence χI ∈ A for a closed interval I ⊂ R.

The collection of supports of functions in A forms a σ -algebra, and since this σ -
algebra contains all closed intervals it also contains all Borel sets. Thus A contains
all simple Borel functions. Since every Borel function f is a pointwise limit of
simple Borel functions fn with |fn| ≤ |f |, it follows that A = Bb(R). 
�

One immediate consequence of part (b) of Theorem 5.9 is the fact that the
resolvent estimate of Corollary 4.11 becomes, for A self-adjoint, the equality

∥∥(A− z)−1
∥∥ = 1

dist(z, σ (A))
. (5.20)

This relation can be quite helpful in locating the spectrum. For z ∈ C, suppose that
we can find a unit vector u ∈ D(A) such that

‖(A− z)u‖ ≤ ε.

This implies that ‖(A − z)−1‖ ≥ 1/ε, and therefore by (4.27) there exists a point
λ ∈ σ(A) with |λ− z| ≤ ε.

One potential problem with the construction of the functional calculus given
here is the fact that measure space (X,μ) provided by the spectral theorem is not
specified explicitly (and not even uniquely defined). It is therefore very useful to
express the functional calculus in terms of the resolvent, without reference to the
auxiliary measure space.

Theorem 5.10. Suppose A is self-adjoint and f ∈ Cb(R). Then

f (A) = lim
ε→0

1

2πi

∫ ∞

−∞
f (λ)

[
(A− λ− iε)−1 − (A− λ+ iε)−1

]
dλ, (5.21)

with the limit taken in the strong operator sense. If f is uniformly continuous, then
the limit ε→ 0 exists in the operator-norm topology.
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Proof By the functional calculus, the operator on the right-hand side of (5.21) is
given by fε(A), where

fε(x) := 1

2πi

∫ ∞

−∞
f (λ)

[
1

x − λ− iε −
1

x − λ+ iε
]
dλ

= ε

π

∫ ∞

−∞
f (λ)

(x − λ)2 + ε2 dλ.

Subtracting this from f (x) and making the change of variables x = λ− εt give

f (x)− fε(x) = 1

π

∫ ∞

−∞
f (x)− f (x + εt)

t2 + 1
dt (5.22)

Since f is continuous, fε → f pointwise as ε→ 0, by the dominated convergence
theorem. Furthermore, ‖fε‖∞ ≤ ‖f ‖∞ so the strong operator limit in (5.21)
follows from Theorem 5.9(c).

If f is uniformly continuous, then it is clear from (5.22) that fε → f uniformly.
In this case, operator-norm convergence follows from Theorem 5.9(b). 
�

5.4 Spectral Decomposition

In this section we will discuss various decompositions of the spectrum of a self-
adjoint operator A. We have already defined one important subset, the point
spectrum σpt(A) consisting of the eigenvalues.

To identify other components of the spectrum, we can use the functional calculus
to create projections. To each Borel subset E ⊂ R, we associate an orthogonal
projection

ΠE := χE(A),

as defined by Theorem 5.9. This yields a family of projections, collectively
denoted by Π , called the spectral resolution of A. The following result shows the
relationship between the spectrum and the support of Π .

Theorem 5.11. For a self-adjoint operator A, the point λ ∈ R lies in σ(A) if and
only if Π(λ−ε,λ+ε) �= 0 for all ε > 0. If Π{λ} �= 0, then λ is an eigenvalue and the
range of Π{λ} is the corresponding eigenspace.

Proof Define the measure space (X,μ), the unitary map Q : L2(X, dμ) → H,
and α(x) := x as in Theorem 5.6. For E ⊂ R,

ΠE = Q−1χα−1{E}Q.

Therefore ΠE �= 0 if and only if μ{α ∈ E} > 0, and the first claim follows from
the fact that σ(A) is the essential range of α, by Theorem 4.5.
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If φ ∈ range(Π{λ}), then Q−1φ has support on α = λ. Thus αQ−1φ = λQ−1φ,
which implies that Aφ = λφ. 
�

5.4.1 Discrete and Essential Spectrum

Our first subdivision of the spectrum takes into account the rank of the spectral
projection Π near a point.

Definition 5.12. For a self-adjoint operator A, the essential spectrum σess(A) is the
set of λ ∈ σ(A) such that Π(λ−ε,λ+ε) has infinite rank for all ε > 0. The discrete
spectrum σdisc(A) consists of λ ∈ σ(A) for which Π(λ−ε,λ+ε) has finite rank for
some ε > 0.

Note that the definitions are complementary, so that

σ(A) = σdisc(A) ∪ σess(A) (5.23)

is a disjoint union. The discrete spectrum is clearly a subset of the point spectrum.
The difference between them is that an eigenvalue may have infinite multiplicity, or
otherwise lie within the essential spectrum. Such eigenvalues are considered point
but not discrete spectrum.

We saw in Theorem 4.16 that elements of the spectrum are approximate
eigenvalues in the sense that there exists a sequence of unit vectors un such that
(A− λ)un → 0. We can describe the essential spectrum in a similar way by adding
an extra requirement that un → 0 in the weak sense. Note that this condition is
satisfied in particular if {un} is orthonormal, by Exercise 2.7.

Theorem 5.13 (Weyl’s Criterion). Suppose A is a self-adjoint on a Hilbert space
H. A point z ∈ C lies in σess(A) if and only if there exists a sequence {un} ⊂ D(A)
with ‖un‖ = 1, such that un → 0 in the weak sense and

lim
n→∞‖(A− z)un‖ = 0.

Proof We already know from Theorem 4.16 that no such sequence exists for
z ∈ ρ(A), so it suffices to consider λ ∈ σ(A). If λ ∈ σess(A), then rangeΠ

(λ− 1
n
,λ+ 1

n
)

is infinite-dimensional for all n. Hence, for each n we can choose a unit vector
un ∈ rangeΠ

(λ− 1
n
,λ+ 1

n
)

which is orthogonal to u1, . . . , un−1. An orthonormal

sequence converges weakly to 0, by Exercise 2.7. Furthermore, the fact that un ∈
rangeΠ

(λ− 1
n
,λ+ 1

n
)

implies

‖(A− λ)un‖ < 1

n
.

Hence (A− λ)un → 0.
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Now suppose λ ∈ σdisc(A) and choose ε > 0 so that Π(λ−ε,λ+ε) has finite rank.
Let {e1, . . . , ek} be a basis for rangeΠ(λ−ε,λ+ε), so that

Π(λ−ε,λ+ε)u =
k∑

j=1

〈u, ej 〉ej .

Let {un} be a sequence in D(A)with ‖un‖ = 1. If un → 0 weakly, then in particular

lim
n→∞〈un, ej 〉 = 0

for all j ∈ N. Hence

lim
n→∞‖Π(λ−ε,λ+ε)un‖ = 0. (5.24)

Since A commutes with ΠE we can use orthogonal decomposition to estimate

‖(A− λ)un‖ =
∥∥(A− λ)(1−Π(λ−ε,λ+ε))un

∥∥+ ∥∥(A− λ)Π(λ−ε,λ+ε)un
∥∥

≥ ε
∥∥(1−Π(λ−ε,λ+ε))un

∥∥− ε∥∥Π(λ−ε,λ+ε)un
∥∥.

By (5.24), this implies that

lim inf
n→∞ ‖(A− λ)un‖ ≥ ε.

Therefore, the criteria for {un} cannot be satisfied for λ ∈ σdisc(A). 
�
The sequence {un} appearing in Theorem 5.13 is called a Weyl sequence for λ. If

A is the closure of an essentially self-adjoint operatorA0, then it suffices to consider
Weyl sequences in D(A0). In other words, it suffices to consider functions in a
core domain for A. To see this, suppose {un} ⊂ D(A) is a Weyl sequence for λ.
Because A is the closure of A0, for each n, we can find wn ∈ D(A0) such that
‖wn − un‖ ≤ 1/n and ‖Awn − Aun‖ ≤ 1/n. The sequence {wn/‖wn‖} then gives
a Weyl sequence for λ contained in D(A0).

The term “essential spectrum” is explained by the following corollary to Theo-
rem 5.13. Since compact operators map weakly convergent sequences to strongly
convergent by Theorem 3.38, the addition of a compact operator has no effect on
the existence of Weyl sequences. This yields the proof of the following:

Theorem 5.14 (Weyl Stability). Suppose that A and B are self-adjoint operators,
with B compact. Then

σess(A+ B) = σess(A).
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5.4.2 Continuous Spectrum

Another way to classify the spectrum is through the properties of the associated
measures. By the Lebesgue decomposition theorem, a regular Borel measure μ on
R admits a unique decomposition of the form,

μ = μpp + μac + μsc. (5.25)

Here μpp is a pure point measure (a sum of point measures), μac is absolutely
continuous with respect to Lebesgue measure, and μsc is singular continuous. See
Appendix A.1.5 for a brief review of this material.

Since the measure space (X,μ) provided by the spectral theorem consists of
copies of R equipped with finite Borel measures, we can derive from (5.25) the
decomposition,

L2(X, dμ) = L2(X, dμpp)⊕ L2(X, dμac)⊕ L2(X, dμsc).

The corresponding decomposition of H is denoted

H = Hpp ⊕Hac ⊕Hsc.

Based on this subdivision, the continuous portion of the spectrum can be decom-
posed in disjoint sets,

σcont(A) := σac(A) ∪ σsc(A),

where

σac(A) := σ(A|Hac), σsc(A) := σ(A|Hsc).

Note that the point spectrum σpt(A), the set of eigenvalues, is not necessarily
closed. On the other hand, the spectrum of the restriction A|Hpp is closed by
definition. In fact, it is easy to check that

σ(A|Hpp) = σpt(A).

(This follows from Exercise 4.9.) Hence the measure decomposition (5.25) leads to
the partition,

σ(A) = σpt(A) ∪ σac(A) ∪ σsc(A), (5.26)

as an alternative to (5.23).
Unlike the essential spectrum, the decomposition (5.26) is unstable under

compact perturbations. A remarkable theorem of Weyl and von Neumann [93] says
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that for any bounded self-adjoint operator, there exists a compact (in fact, Hilbert–
Schmidt) perturbation such that the perturbed operator has pure point spectrum. On
the other hand, Kato [51] proved that the absolutely continuous spectrum is stable
under trace-class perturbations.

For v ∈ H, the spectral resolution can be used to associate a spectral measure to
a vector v ∈ H, by setting

μv(E) := 〈v,ΠEv〉
for a Borel set E ⊂ R. Integration with respect to the spectral measure is related to
the functional calculus by

〈v, f (A)v〉 =
∫

R

f dμv (5.27)

for f ∈ Bb(R). This is analogous to the formula (5.10) for the spectral measure in
the unitary case.

Starting from the quadratic functional (5.27), we can derive the corresponding
sesquilinear form h(v,w) = 〈v, f (A)w〉 using the polarization identity as in (2.17).
By the Riesz lemma, the operator f (A) is uniquely determined by the set of matrix
elements 〈v, f (A)v〉. Therefore, the full functional calculus could be recovered
from knowledge of the spectral resolution Π .

At the operator level, the relationship (5.27) can be stated more directly in terms
of integration with respect to the projection-valued measure E �→ ΠE . That is, it is
possible to define integration with respect to dΠ , just as for an ordinary measure.
In terms of this operator integral, (5.27) is equivalent to

f (A) =
∫

R

f (λ) dΠ(λ). (5.28)

We will not develop the projection-valued measure theory here. It suffices for our
purposes to regard (5.28) as a shorthand notation for the weak definition (5.27).

5.4.3 The Min–Max Principle

The Weyl criterion of Theorem 5.13 allows us to locate the essential spectrum
without explicit knowledge of the resolvent or spectral projectors. In that sense,
it is similar to the max–min principle which we stated for compact operators in
Theorem 4.22. For general self-adjoint operators, we can formulate a version of
this principle which helps to separate the bottom of the essential spectrum from the
discrete eigenvalues below it.

Theorem 5.15 (Min–Max Principle). Let A be a self-adjoint operator whose
spectrum is bounded below. Let Λk denote the set of subspaces of D(A) of
dimension k, and define
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αk := min
W∈Λk

{
max

u∈W\{0}
〈u,Au〉
‖u‖2

}
(5.29)

for k ∈ N. Then for each k, one of the following alternatives holds:

(a) αk is the kth eigenvalue (arranged in increasing order and counted with
multiplicity) and there are at least k eigenvalues below the essential spectrum.

(b) αk = inf σess(A) and there are at most k − 1 eigenvalues below the essential
spectrum.

Proof For c ∈ R, suppose that rankΠ(−∞,c) ≥ k. Since the spectrum of
A is bounded below, rangeΠ(−∞,c) ⊂ rangeΠ(a,c) for some a ∈ R. By the
characterization of D(A) in Theorem 5.6, it follows that

rangeΠ(−∞,c) ⊂ D(A).

The assumption on the rank thus implies that there is a subspace W ∈ Λk for which
W ⊂ rangeΠ(−∞,c). The restriction of A to rangeΠ(−∞,c) is bounded by c, so that

max
u∈W\{0}

〈u,Au〉
‖u‖2 ≤ c.

Therefore,

αk ≤ c.

Now suppose that rankΠ(−∞,c) < k. Then, for each subspace W ∈ Λk , there
exists some vector u ∈ W such that

〈u,Au〉 > c‖u‖2.

This implies that

αk ≥ c.

Taking the contrapositive of these statements, we conclude that for all ε > 0,

rankΠ(−∞,αk−ε) < k,

rankΠ(−∞,αk+ε) ≥ k.
(5.30)

It follows that rankΠ(αk−ε,αk+ε) ≥ 1 for all ε > 0, which means that αk ∈ σ(A). If
Π(αk−ε,αk+ε) has finite rank for some ε > 0, then αk ∈ σdisc(A), and it then follows
from (5.30) that αk is the kth eigenvalue.

On the other hand, if Π(αk−ε,αk+ε) has infinite rank for some ε > 0, then αk ∈
σess(A), by definition. The first statement of (5.30) implies that no point below αk
lies in σess(A), so αk is the bottom of the essential spectrum. 
�
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There is a corresponding max–min principle. That is, the value of αk from
Theorem 5.15 can be computed as

αk = max
v1,...,vk−1∈H

{
min

u∈D(A)∩{v1,...,vk−1}⊥\{0}
〈u,Au〉
‖u‖2

}
. (5.31)

We leave the proof to Exercise 5.8.

5.5 Exercises

5.1. For a self-adjoint operator A, let U be the Cayley transform defined in
Lemma 5.7. Prove that 1 ∈ ρ(U) if and only if A is bounded.

5.2. Let A be a self-adjoint operator.

(a) Suppose that λ is an isolated point of σ(A), meaning that there is a neighbor-
hood of λ containing no other point of σ(A). Prove that λ is an eigenvalue of
A.

(b) Prove that if the spectrum ofA is purely discrete, in the sense of Definition 5.12,
if and only if A has compact resolvent (as defined in Exercise 4.11).

5.3. If {An} and A are self-adjoint operators, then we say that An → A in the
norm-resolvent sense if

lim
n→∞

∥∥(An − i)−1 − (A− i)−1
∥∥ = 0. (5.32)

(a) Prove that norm-resolvent convergence implies that

lim
n→∞

∥∥(An − z)−1 − (A− z)−1
∥∥ = 0,

for all z with Im z �= 0.
(b) For x ∈ ρ(A) ∩ R, show that x ∈ ρ(An) for all n sufficiently large and that

(An − x)−1 → (A− x)−1 in the operator topology.

5.4. Assume that {An} and A are self-adjoint operators with An → A in the norm-
resolvent sense, as defined in Exercise 5.3. Suppose f is a bounded continuous
function on R whose limits at ±∞ exist and are equal. Prove that

lim
n→∞

∥∥f (An)− f (A)
∥∥ = 0.

[Hint: Approximate f (An) and f (A) by polynomials in the respective Cayley
transforms Un and U .]
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5.5. For a self-adjoint operator A and t ∈ R, let

U(t) := eitA,

as defined by the functional calculus. It follows from Theorem 5.9 that {U(t)}t∈R is
a unitary group, meaning that each U(t) is unitary and

U(s + t) = U(s)U(t)

for all s, t ∈ R. For v ∈ D(A), prove that

lim
t→0

1

t

[
U(t)v − v] = iAv.

5.6. Let U(t) := eitA be the unitary group associated with a self-adjoint operator A
as in Exercise 5.5. Note that t �→ U(t) is continuous in the strong operator topology
by Theorem 5.9. Prove that U(t) is continuous with respect to the operator-norm
topology if and only if A is bounded.

5.7. Suppose A is self-adjoint, and let γ be a simple, positively oriented piecewise
smooth curve in ρ(A) that encloses a subset E ⊂ σ(A). Prove that the spectral
projection onto E is given by

ΠE = −1

2πi

∫

γ

(A− z)−1 dz,

where the contour integral is defined as in Lemma 4.7.

5.8. Prove the max–min principle (5.31).

5.9. Suppose that A is a self-adjoint operator on a Hilbert space H. Prove that the
interval (λ − ε, λ + ε) intersects the essential spectrum of A if and only if there
exists an infinite-dimensional subspace W ⊂ D(A) such that

‖(A− λ)w‖ ≤ ε‖w‖

for all w ∈ W .

Notes

The strategy of proving the spectral theorem for unitary operators using Fourier
series was inspired by a set of lecture notes by Michael Taylor. A similar method is
presented in Simon [83, §5.5].
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Other expositions of the von Neumann trick of deriving the spectral theorem for
unbounded operators from the Cayley transform can be found in Simon [83, §7.2]
and Taylor [90, §8.1]. In Weidmann [94, §7.3], the spectral theorem for unbounded
operators is proven by using the resolvent formula (5.21) to derive the spectral
resolution.

Another way to prove the spectral theorem for unitary operators is to construct
the continuous functional calculus for bounded self-adjoint operators directly,
as described in Section 5.2. This construction, which extends easily to normal
operators, is developed for example in Reed and Simon [69, Chapter VII] and Hall
[41, Chapter 10]. An alternate route to the spectral theorem for normal operators is
via Banach algebra theory, as in MacCluer [60, §6.1] or Rudin [79, Part III].

One-parameter groups generated by self-adjoint operators, such as the unitary
group introduced in Exercise 5.5, are an important topic in spectral theory, particular
in applications to quantum mechanics. For more details, see Reed and Simon [69,
§VIII.4], Schmüdgen [80, Chapter 6], or Weidmann [94, §7.6].



Chapter 6
The Laplacian with Boundary Conditions

The oldest problem in spectral theory is to understand the sound of a vibrating
string. As we noted in Chapter 1 this problem dates back to Pythagoras. The
first mathematical model for the string was the one-dimensional wave equation
developed by Jean d’Alembert in 1746. If u(x, t) denotes the displacement of the
string at position x ∈ [0, �] and time t , the equation takes the form,

(∂2
t − ∂2

x )u = 0 (6.1)

(with physical constants omitted). Separating the time and position variables yields
a spatial equation,

−�φ = λφ, u(0) = u(�) = 0. (6.2)

Historically this is called the Helmholtz equation, based on Hermann von Helmh-
oltz’s work on electrodynamics in the late nineteenth century. In the later termi-
nology of Hilbert we would describe it as the “eigenvalue equation” for the
Laplacian with Dirichlet boundary conditions.

Equation (6.2) has an obvious family of solutions,

φk(x) := sin

(
kπx

�

)

for k ∈ N, with eigenvalues

λk =
(kπ
�

)2
.
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If we reinstate the physical constants in (6.1), then this model predicts a set of
vibrational frequencies,

νk = k

2�

√
T

ρ
, k ∈ N, (6.3)

measured in Hz (cycles per second), where ρ is the linear density of the string and
T the tension. The formula (6.3) reproduces an empirical law for the overtone series
discovered by Mersenne.

In this chapter, we will analyze higher dimensional analogues of the string
problem. That is, we consider the spectral theory of the Laplacian on an open set
Ω ∈ R

n. We will concentrate on the classical boundary conditions, Dirichlet and
Neumann, and develop the corresponding self-adjoint extensions.

In the Dirichlet case, for Ω bounded we will show that the spectrum of σ(−�)
is purely discrete. In this case the Dirichlet Laplacian admits an orthonormal basis
of eigenfunctions, with a sequence of eigenvalues

0 < λ1 ≤ λ2 ≤ · · · → +∞. (6.4)

A similar result holds in the Neumann case, provided the boundary ∂Ω is suffi-
ciently regular, except that λ1 = 0.

In dimension two, the sequence of Dirichlet eigenvalues yields the set of
vibrational frequencies for a membrane which is fixed at its edges, i.e., the overtone
series for a drum with a head given by Ω . As in the string example, the eigenvalue
equation arises from a simplification of the physical model, a linear approximation
that ignores friction.

Example 6.1. Consider the Laplacian with Dirichlet boundary conditions on an
open rectangle Ω = (0, �1) × · · · × (0, �n) ⊂ R

n. Separation of variables reduces
the eigenvalue equation to a system of one-dimensional equations. The resulting
eigenfunctions are

φk(x) :=
n∏
j=1

1√
�j

sin

(
πkjxj

�j

)
(6.5)

for k ∈ N
n. Some two-dimensional examples are illustrated in Figure 6.1.

We can show that {φk}k∈Nn forms a basis for L2(Ω) by exploiting the obvious
connection to Fourier series. For convenience, let us first change variables so that
�j = π for each j . We can identify L2((0, π)n) with a closed subspace of L2(Tn),
where T

n := R
n/(2πZ)n, by first extending functions on (0, π)n to odd functions

on (−π, π)n and then making them 2π -periodic. These extended functions can then
be expanded in terms of the Fourier basis for L2(Tn) (see Example 2.32). For odd
functions in particular, the expansion reduces to a Fourier sine series. It follows
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Fig. 6.1 Dirichlet eigenfunctions for a rectangular domain

that the functions (6.5) yield an orthonormal basis for L2((0, π)n). For the original
rectangle Ω this shows that the full Dirichlet spectrum is

σ(−�) =
{ n∑
j=1

π2k2
j

�2
j

: k ∈ N
n

}
.

Under Neumann conditions, the only change is to switch from sines to cosines
in (6.5). For the Fourier basis argument we then use even extensions instead of odd.
The set of eigenvalues is given by the same formula, except that each kj is allowed
to be zero. ♦

Example 6.2. Consider the Laplacian on the unit disk D ⊂ R
2. In polar coordinates,

� = 1

r

∂

∂r

(
r
∂

∂r

)
+ 1

r2

∂2

∂θ2 .

If we substitute φ(r, θ) = h(r)eikθ into the eigenvalue equation −�φ = λφ, then
the equation for the radial factor is

(
r
∂

∂r

)2

h+ (λr2 − k2)h = 0.

The solutions which are regular as r → 0 are given by h(r) = Jk(
√
λr), where

Jk is the standard Bessel function. To satisfy h(1) = 0, we set
√
λ = jk,m, where

{0 < jk,1 < jk,2 < . . .} denotes the sequence of zeros of Jk . This gives a set of
eigenfunctions

φk,m(r, θ) = Jk(jk,mr)e
ikθ .

An example is shown in Figure 6.2.
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Fig. 6.2 Dirichlet
eigenfunction on the unit disk

This set of eigenfunctions yields a basis for L2(D), so that

σ(−�) = {j2
k,m : k ∈ Z,m ∈ N

}
.

To prove this, one can use Fubini’s theorem and the Fourier basis theorem to reduce
the argument to the fact that {√rJk(jk,mr)}k∈Z,m∈N is a basis for L2(0, 1). This
result is well known from special function theory, although the proof is not exactly
elementary.

The same derivation applies in the case of Neumann boundary conditions, except
that the zeros of Jk(z) are replaced with the zeros of J ′k(z), which are denoted by
j ′k,m. Figure 6.3 shows an example of a Neumann eigenfunction. ♦

Fig. 6.3 Neumann
eigenfunction on the unit disk
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6.1 Self-adjoint Extensions

As noted in Example 3.20, for a domain Ω ⊂ R
n we can impose Dirichlet or Neu-

mann boundary conditions to guarantee positivity of the Laplacian, provided there
is sufficient regularity to justify the use of Green’s identity. In this section, we will
produce self-adjoint extensions of −� corresponding to these classical boundary
conditions. These are Friedrichs extensions, constructed using the quadratic form
approach developed in Section 3.4.3. In both cases, self-adjointness does not require
any restriction on the regularity of ∂Ω .

Although we focus on the Laplacian to simplify the exposition, the methods
discussed here extend directly to the case of uniformly elliptic operators. (See
Exercise 6.4.)

6.1.1 The Space H 1
0 (Ω)

Let Ω ⊂ R
n be an open set. Because functions in L2(Ω) are defined only up

to sets of measure zero, they do not have well-defined boundary values on ∂Ω .
However, functions in the Sobolev space H 1(Ω) defined in Section 2.5.2 have
enough regularity to allow for a meaningful interpretation of the Dirichlet conditions
u|∂Ω = 0. To implement these conditions, we define the subspace

H 1
0 (Ω) := C∞0 (Ω) ⊂ H 1(Ω), (6.6)

where the closure is with respect to the H 1 norm. As a closed subspace, H 1
0 (Ω) is

itself a Hilbert space.
It is not immediately clear thatH 1

0 (Ω) differs fromH 1(Ω). After all, the closure
of C∞0 (Ω) with respect to the L2 norm is simply L2(Ω). Before we proceed, let us
consider how the definition of H 1

0 works in some special cases.

Example 6.3. Let Ω be the unit interval (0, 1). In Example 2.24 we saw that
functions in H 1(0, 1) are absolutely continuous. We claim that H 1

0 (0, 1) is the
corresponding space with classical Dirichlet conditions at the endpoints, i.e.,

H 1
0 (0, 1) = {f ∈ AC[0, 1] : f ′ ∈ L2[0, 1], f (0) = f (1) = 0

}
.

The endpoint condition follows from the fact that convergence in H 1 implies
uniform convergence in dimension one. To prove this, we need to estimate ‖f ‖∞
in terms of ‖f ‖H 1 . For a function f ∈ H 1(0, 1), there exists a point x1 ∈ [0, 1] at
which

|f (x1)| = ‖f ‖∞,
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by continuity. For x ∈ [0, 1], we can use the formula

f (x1) = f (x)+
∫ x1

x

f ′(t) dt (6.7)

and apply Cauchy–Schwarz to the integral to obtain

‖f ‖∞ ≤ |f (x)| + |x − x1| 1
2 ‖f ′‖.

By squaring and integrating this estimate over x, we can deduce that

‖f ‖∞ ≤ C‖f ‖H 1 . (6.8)

For f ∈ H 1
0 (0, 1), there exists a sequence {ψk} ⊂ C∞0 (0, 1) which converges to

f in the H 1 norm. By (6.8) this convergence is uniform, and so f must vanish at
the endpoints. ♦
Example 6.4. Suppose that Ω ⊂ R

n has a piecewise C1 boundary, and that
u ∈ C∞(Ω). We will show that if u also lies in H 1

0 (Ω), then it satisfies classical
Dirichlet boundary conditions.

Consider an approximating sequence {ψn} ⊂ C∞0 (Ω) such that ψn → u with
respect to the H 1 norm. For u, φ ∈ C∞(Ω), Green’s first identity implies that

∫

∂Ω

u
∂φ

∂ν
dS =

∫

Ω

[∇u · ∇φ + u�φ]dx

= lim
n→∞

∫

Ω

[∇ψn · ∇φ + ψn�φ
]
dx

= 0.

Since this holds for all φ ∈ C∞(Ω), it follows that

u|∂Ω = 0.

This conclusion can be generalized to all of H 1
0 (Ω) through the theory of boundary

“traces” of Sobolev functions; see, for example, Evans [29, §5.5]. ♦
If Ω is bounded, then functions in H 1

0 (Ω) satisfy a classical inequality that is
closely connected to the spectral theory of the Dirichlet Laplacian on Ω .

Theorem 6.5 (Poincaré Inequality). Suppose Ω ⊂ R
n is a bounded open set.

There exists a constant γ > 0 such that

‖u‖L2 ≤ γ ‖∇u‖L2

for all u ∈ H 1
0 (Ω).
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Proof By the definition of H 1
0 (Ω), it suffices to prove the result for functions in

C∞0 (Ω). Fix M > 0 so that

Ω ⊂ R := [−M,M]n.

The natural embedding C∞0 (Ω) ⊂ C∞0 (R), given by extending by zero, is an
isometry with respect to both H 1 and L2 norms. Thus it suffices to derive the
Poincaré inequality for ψ ∈ C∞0 (R).

By the fundamental theorem of calculus,

ψ(x) =
∫ x1

−M
∂1ψ(y, x2, . . . , xn) dy.

Applying the Cauchy–Schwarz inequality on L2(−M,M) gives the estimate,

|ψ(x)|2 ≤ 2M
∫ M

−M
∣∣∂1ψ(y, x2, . . . , xn)

∣∣2 dy,

for all x ∈ [−M,M]n. Integrating this estimate over x then yields

‖ψ‖2 ≤ 4M2‖∂1ψ‖2

≤ 4M2‖∇ψ‖2.


�

6.1.2 The Dirichlet Laplacian

Our goal in this section is to obtain a self-adjoint extension of −� on Ω by
applying the Friedrichs construction from Section 3.4.3 to the H 1 inner product
on H 1

0 (Ω). This case demonstrates one of the primary advantages of the quadratic
form approach, namely that the domain of the quadratic form is simpler than the
domain of the operator.

Since we are considering multiple extensions in this chapter, let us denote the
Dirichlet Laplacian by −�D. This operator acts on the domain

D(−�D) :=
{
u ∈ H 1

0 (Ω) : −�u ∈ L2(Ω)
}
, (6.9)

where −�u is interpreted in the weak sense. The condition that −�u ∈ L2(Ω)

means precisely that there exists g ∈ L2(Ω) such that

〈g,ψ〉 = 〈u,−�ψ〉, for all ψ ∈ C∞0 (Ω). (6.10)

For u ∈ D(−�D), we define −�u := g.
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Under certain conditions, the definition (6.9) can be simplified. A standard
elliptic regularity result (Theorem A.20) says that if ∂Ω is C2, u ∈ H 1

0 (Ω), and
−�u ∈ L2(Ω), then u ∈ H 2(Ω). Thus, in the case of C2 boundary, the exact
domain is

D(−�D) = H 1
0 (Ω) ∩H 2(Ω). (6.11)

We will discuss the issue of elliptic regularity in more detail in Sections 6.3
and 9.4.2.

To set up the proof of self-adjointness, it will be helpful to rewrite the definition
(6.9) in terms of the H 1 inner product. By Green’s identity,

〈∇φ,∇ψ〉 = 〈φ,−�ψ〉, (6.12)

for φ,ψ ∈ C∞0 (Ω). Thus −� is symmetric and positive on C∞0 (Ω).
Taking an approximating sequence {φk} ⊂ C∞0 (Ω) converging to u ∈ H 1

0 (Ω)

thus gives

〈u,ψ〉H 1 = 〈u,−�ψ〉 + 〈u,ψ〉. (6.13)

Therefore, the condition (6.10) is equivalent to the existence of f ∈ L2(Ω) such
that

〈u,ψ〉H 1 = 〈f,ψ〉, for all ψ ∈ C∞0 (Ω). (6.14)

Note that by (6.13), f = (−�+ 1)u in the weak sense.
By the Riesz lemma (Theorem 2.28), the condition (6.14) holds if and only

if 〈u, ·〉H 1 admits extension to L2(Ω) as a bounded functional. We thus have an
alternate specification of (6.9),

D(−�D) :=
{
u ∈ H 1

0 (Ω) : 〈u, ·〉H 1 extends to L2(Ω)

as a bounded functional
}
.

(6.15)

Note that this matches the domain definition (3.29) used in the Friedrichs extension.
We can thus prove a self-adjointness result by adapting the arguments from
Theorem 3.29.

Theorem 6.6. For an open set Ω ⊂ R
n, the operator −�D is self-adjoint.

Moreover, it is the unique self-adjoint extension of −� from C∞0 (Ω) to a domain
contained in H 1

0 (Ω).

Proof It suffices to prove the self-adjointness of A := −� + 1, with D(A) =
D(−�D). Since A is already known to be symmetric, we need to only prove that
D(A∗) ⊂ D(A). The essential point will be to show that A is surjective.
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Given f ∈ L2(Ω), the functional 〈f, ·〉 is bounded on H 1
0 (Ω), because

|〈f, v〉| ≤ ‖f ‖‖v‖ ≤ γ ‖f ‖‖v‖H 1 .

Therefore, by the Riesz lemma, there exists an element u ∈ H 1
0 (Ω) such that

〈u, v〉H 1 = 〈f, v〉 (6.16)

for all v ∈ H 1
0 (Ω). By (6.15), this implies that u ∈ D(A) and

Au = f.

This proves that A is surjective. Since ker(A∗) = range(A)⊥ by Lemma 3.7, this
also means that A∗ is injective.

Now we claim that D(A∗) ⊂ D(A). Suppose that u ∈ D(A∗). By the surjectivity
of A, there exists v ∈ D(A) such that

Av = A∗u.

Since A ⊂ A∗ by symmetry, this can be rewritten as

A∗(u− v) = 0. (6.17)

Since A∗ is injective, as noted above, this implies that u = v. We have thus shown
that u ∈ D(A). This completes the argument that D(A∗) ⊂ D(A), which proves A
is self-adjoint.

To prove the uniqueness claim, suppose that B is another self-adjoint operator
with C∞0 (Ω) ⊂ D(B) ⊂ H 1

0 (Ω), such that B agrees with −�+ 1 on C∞0 (Ω). For
u ∈ D(B) and ψ ∈ C∞0 (Ω), the self-adjointness of B implies

〈Bu,ψ〉 = 〈u,Bψ〉
= 〈u, (−�+ 1)ψ〉.

By (6.10), we thus have u ∈ D(A) = D(−�D) and Bu = Au. This shows that
B ⊂ A. Since both operators are self-adjoint, we can take the adjoint of this relation
to deduce A ⊂ B. Therefore B = A. 
�

Note that the uniqueness statement in Theorem 6.6 does not say that −� is
essentially self-adjoint on C∞0 (Ω). There are many possible self-adjoint extensions,
including the Neumann Laplacian discussed in the next section. Uniqueness holds
only if we restrict our attention to domains within H 1

0 (Ω).
If Ω is bounded, then the Poincaré inequality (Theorem 6.5) implies that −�D

is itself bijective as a map D(−�D) → L2(Ω). This establishes an existence
result for the Poisson problem: for any f ∈ L2(Ω), there exists a unique weak
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solution of −�u = f with u ∈ D(−�D). The inverse map f �→ u is bounded,
by Theorem 3.17. We will see in Section 6.2 that (−�D)

−1 is in fact a compact
operator.

6.1.3 The Neumann Laplacian

The classical Neumann boundary condition, vanishing of the normal derivative on
∂Ω , requires the definition of a normal vector to the boundary. Neumann boundary
conditions have a natural interpretation, for example, in the case where ∂Ω is at
least piecewise C1. It turns out that such regularity assumptions are not required for
the Neumann self-adjoint extension of −�, just as in the Dirichlet case. However,
later we will see that certain aspects of the spectral theory do require extra boundary
regularity in the Neumann case.

As in Section 6.1.2, we will construct the self-adjoint extension for Neumann
boundary conditions using the Friedrichs method from Section 3.4.3. The new
feature here is that the boundary conditions do not appear explicitly in the
specification of the quadratic form domain.

The Neumann Laplacian −�N is defined by the domain

D(−�N) :=
{
u ∈ H 1(Ω) : 〈u, ·〉H 1 extends to L2(Ω)

as a bounded functional
}
.

(6.18)

This is quite similar to (6.15), except that H 1
0 is replaced by H 1. As in the Dirichlet

case, the condition that 〈u, ·〉H 1 admits a bounded L2 extension implies that−�u ∈
L2(Ω). What is new here is that the boundary condition is implicit in the condition
that 〈u, ·〉H 1 is a bounded functional.

To see how this works, consider the case when ∂Ω is piecewise C1. For u, f ∈
C∞(Ω), Green’s identity gives

〈∇u,∇f 〉 = 〈−�u, f 〉 +
∫

∂Ω

f
∂u

∂ν
dS. (6.19)

If we also assume that u ∈ D(−�N), then this means that

〈u, v〉H 1 = 〈(−�+ 1)u, v〉

for all v ∈ H 1(Ω). This implies in particular that

〈∇u,∇f 〉 = 〈−�u, f 〉



6.2 Discreteness of Spectrum 135

for all f ∈ C∞(Ω). Therefore, by (6.19),

∂u

∂ν

∣∣∣
∂Ω
= 0

for u ∈ D(−�N) ∩ C∞(Ω).
The proof of self-adjointness in the Neumann case is essentially a repeat of the

proof of Theorem 6.6. We simply replace the Hilbert space H 1
0 (Ω) with H 1(Ω), to

obtain the following:

Theorem 6.7. For an open set Ω ⊂ R
n, the operator −�N is self-adjoint.

To make a uniqueness statement as in Theorem 6.6, we need for ∂Ω to be regular
enough that classical Neumann boundary conditions make sense. For example, if
∂Ω is piecewise C1 and we define the set of functions satisfying classical Neumann
conditions as

C∞N (Ω) :=
{
f ∈ C∞(Ω) : ∂u

∂ν
= 0
}
,

then an argument similar to that given in Theorem 6.6 shows that−�N is essentially
self-adjoint on C∞N (Ω).

6.2 Discreteness of Spectrum

A standard way to see that an operator T has discrete spectrum is to show that
(T − z)−1 is compact for some z ∈ ρ(T ). As we saw in Exercise 4.11, this either
holds at all points in the resolvent set or none. In the former case, T is said to have
compact resolvent, and this implies that σ(T ) is purely discrete. For a self-adjoint
operator we can go even farther. By Theorem 4.21 (Hilbert–Schmidt), a self-adjoint
operator with compact resolvent admits an orthonormal basis of eigenvectors.

In this section we will establish the compactness of the resolvent for the Dirichlet
and Neumann Laplacians in the case where Ω is bounded. In the Neumann case
the compact resolvent property requires an additional restriction on the boundary
regularity. The set Ω is said to have Lipschitz boundary if ∂Ω can be represented
locally as the graph of a Lipschitz continuous function. From the compact resolvent
property we obtain the following:

Theorem 6.8. For a bounded open set Ω ⊂ R
n, there exists an orthonormal

basis {ψk} for L2(Ω), consisting of real-valued eigenfunctions of −�D, with real
eigenvalues {λk} accumulating at +∞. The same result holds for −�N if ∂Ω is
Lipschitz.

The Poincaré inequality (Theorem 6.5) implies that the eigenvalues of −�D are
strictly positive. If u ∈ H 1

0 (Ω) is expanded in terms of the Dirichlet eigenfunction
basis as

∑∞
k=1 ckψk , then
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‖∇u‖2 =
∞∑
k=1

λk|ck|2.

Assuming that the Dirichlet eigenvalues {λk} are written in increasing order, it
follows that

min
u∈H 1

0 (Ω)\{0}
‖∇u‖2

‖u‖2 = λ1. (6.20)

In other words, λ1 is related to the optimal Poincaré constant γ by

λ1 = γ−2.

We will generalize (6.20) to a min–max formula for higher eigenvalues in Sec-
tion 6.4.

The remainder of this section is devoted to the proof of Theorem 6.8. The main
tool used to establish compactness of the resolvent is the following embedding
theorem that relates the H 1 and L2 topologies.

Theorem 6.9 (Rellich’s Theorem). For a bounded open set Ω ⊂ R
n, the

inclusion H 1
0 (Ω) → L2(Ω) is compact. If ∂Ω is Lipschitz, then the inclusion

H 1(Ω)→ L2(Ω) is also compact.

Before getting into the details of the proof of Theorem 6.9, let us show that
Rellich’s theorem implies the compact resolvent condition.

Proof of Theorem 6.8 The proofs in Dirichlet and Neumann cases are nearly
identical, so we consider only the Dirichlet case.

If u ∈ D(−�D), then by (6.21), Using (6.12), and the fact that C∞0 (Ω) is dense
in H 1

0 (Ω), we can deduce that

〈−�u, v〉 = 〈∇u,∇v〉 = 〈u,−�v〉 (6.21)

for u, v ∈ D(−�D). This shows that −�D is symmetric and positive.

‖u‖2
H 1 = 〈u, (−�+ 1)u〉.

By Cauchy–Schwarz and the fact that ‖u‖ ≤ ‖u‖H 1 , this implies that

‖u‖H 1 ≤ ‖(−�+ 1)u‖.

This shows that (−�D + 1)−1 is bounded as a map L2(Ω) → H 1
0 (Ω). Therefore

(−�D + 1)−1 is compact as a map L2(Ω)→ L2(Ω) by Theorem 6.9. 
�
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6.2.1 Periodic Sobolev Spaces

It is relatively easy to prove Rellich’s theorem in the case of periodic functions, by
making use of Fourier series. We will develop the periodic case in this section, and
then later apply this to the proof of Theorem 6.9. To discuss periodic functions on
R
n, we use the notation T

n to denote the quotient (R/2πZ)n. A function on T
n is

represented by a function on R
n which is 2π -periodic in each coordinate.

There are two possibilities for the definition of Sobolev spaces on T
n. The first is

to adapt the definition of weak derivatives to the periodic setting and use the analog
of (2.23). Because T

n is compact and has no boundary, we do not need for the
test functions to be restricted to compact support here. For u ∈ L1(Tn), the weak
derivative Dαu ∈ L1(Tn) is defined by the condition that

∫

Tn

ψDαu dx = (−1)|α|
∫

Tn

uDαψ dx

for all ψ ∈ C∞(Tn). (Here α is a multi-index; see Section 2.5.1 for the introduction
to this notation.) The Sobolev space Hm(Tn) is given by

Hm(Tn) := {u ∈ L2(Tn) : Dαu ∈ L2(Tn) for |α| ≤ m
}
, (6.22)

for m ∈ N.
The second option is to define Sobolev spaces on T

n using the discrete Fourier
transform. The Fourier basis for L2(Tn) is defined by

φk(x) := (2π)−n/2eik·x,

for k ∈ Z
n. The Fourier coefficient map

u �→ û(k) := 〈φk, u〉

yields an isomorphism L2(Tn)→ �2(Zn), as explained in Example 2.32.
It is easy to see that Dαu exists as a weak derivative in L2(Tn) if and only if

kαû(k) ∈ �2(Zn), and that

Dαu =
∑
k∈Zn

(ik)αû(k)φk

in this case. Thus, an equivalent definition to (6.22) is

Hm(Tn) =
{
u ∈ L2(Tn) :

∑
k∈Zn

(1+ |k|2)m|û(k)|2 <∞
}
,

which now extends the definition to all m ≥ 0.
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Since each φk is an eigenfunction of−� with eigenvalue |k|2, it is clear that−�
is self-adjoint on L2(Tn), with the domain H 2(Tn).

Lemma 6.10. For m > 0, the operator (−�+ 1)−m is compact on L2(Tn).

Proof For N > 0, define a finite rank approximation to (−�+ 1)−m by

TNu =
∑
|k|≤N

(|k|2 + 1
)−m

û(k)φk.

By the estimate
∥∥(−�+ 1)−m − TN

∥∥ ≤ (N2 + 1
)−m

,

TN converges to (−�+ 1)−m in operator norm as N →∞. It follows that (−�+
1)−m is compact, by Theorem 3.37. 
�

The analog of Rellich’s theorem for the periodic case is a direct consequence of
Lemma 6.10.

Corollary 6.11. The inclusion Hm(Tn)→ L2(Tn) is compact for m > 0.

Proof Suppose that {wk} is a bounded sequence in Hm(Tn). This is equivalent to
the condition that the sequence {(−�+ 1)m/2wk} is bounded in L2(Tn). Therefore,
by the compactness of the operator (−� + 1)−m/2, there exists a subsequence of
{wk} that converges in L2(Tn). 
�

6.2.2 Extension Lemmas

To apply Corollary 6.11 to the proof of Theorem 6.9, we need a way to transpose
Sobolev functions from Ω to T

n. By a linear change of coordinates, it suffices to
consider the case where Ω ⊂ (0, 2π)n. The plan is to first extend H 1 functions
from Ω to (0, 2π)n and then make them periodic.

For H 1
0 (Ω) we can actually just take the naive approach of extension by zero.

This works without any regularity conditions on ∂Ω .

Lemma 6.12. For open sets Ω ⊂ Ω̃ ⊂ R
n, extension by zero defines an isometry

H 1
0 (Ω) ↪→ H 1

0 (Ω̃).

Proof For u ∈ H 1
0 (Ω), let ũ denote the extension by zero of u to a function on Ω̃ .

The weak first derivatives ∂ju ∈ L2(Ω) can also be extended by zero to functions
fj ∈ L2(Ω̃). We must check that fj equals the weak derivative ∂j ũ.

Let {ψk} ⊂ C∞0 (Ω) be an approximating sequence such that ψk → u with
respect to the H 1 norm. For φ ∈ C∞0 (Ω̃), integration by parts gives

∫

Ω̃

φ ∂jψk d
nx = −

∫

Ω̃

ψk ∂jφ d
nx.
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Taking k→∞ then shows that

∫

Ω̃

φfj d
nx = −

∫

Ω̃

ũ ∂jφ d
nx.

Hence ∂j ũ = fj ∈ L2(Ω̃) and therefore ũ ∈ H 1
0 (Ω̃). 
�

The extension problem for general Hm functions is more difficult. If Ω has a
rough boundary, then it may not be possible to extend a function while maintaining
the same level of regularity. To avoid technicalities in the argument, we will consider
only the case when ∂Ω is smooth. Our first step is to check that the Sobolev spaces
behave nicely under coordinate changes.

Lemma 6.13. Suppose that F : Ω̃ → Ω is a diffeomorphism. Then the pullback
F ∗ : u �→ u◦F defines a continuous bijectionHm(Ω)→ Hm(Ω̃) for eachm ∈ N.

Proof Let us represent the coordinate change by y = F(x), with Dα
y and Dα

x

denoting the derivatives in the respective coordinate systems. For u ∈ Hm(Ω), our
goal is to compute Dα

y ũ for |α| ≤ m, where ũ := u ◦ F . For ψ̃ ∈ C∞0 (Ω̃), a change

of coordinates by G := F−1 yields

(−1)|α|
∫

Ω̃

ũ Dα
y ψ̃ dy = (−1)|α|

∫

Ω

uG∗(Dα
y ψ̃) |det JG| dx,

where JG is the Jacobian matrix of G. By the chain rule,

G∗(Dα
y ψ̃) =

∑
|β|≤|α|

cβD
β
x ψ,

for some coefficients cβ ∈ C∞(Ω). Since u ∈ Hm(Ω), this implies that

(−1)|α|
∫

Ω̃

ũ Dα
y ψ̃ dy =

∫

Ω

v(α)ψ dx,

where v(α) ∈ L2(Ω) is given by

v(α) :=
∑
|β|≤|α|

Dβ
x

(
cβ |det JG| u

)
.

It follows that the weak derivative Dα
y ũ exists and is equal to F ∗v(α) ∈ L2(Ω̃).

Furthermore, since F ∗ is bounded as a map L2(Ω)→ L2(Ω̃),

‖Dα
y ũ‖ ≤ C‖v(α)‖ ≤ C‖u‖Hm.


�
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Using Lemma 6.13, we can simplify the extension problem by first flattening the
boundary with a change of coordinates. This strategy yields the following:

Lemma 6.14 (Sobolev Extension). Suppose that Ω ⊂ R
n has smooth boundary.

A function in u ∈ Hm(Ω) admits an extension to ũ ∈ Hm(Rn), such that

‖ũ‖Hm(Rn) ≤ Cm‖u‖Hm(Ω), (6.23)

with Cm independent of u.

Proof The first step is to reduce this to a local argument. By assumption, each
boundary point has a neighborhood in which ∂Ω is the graph of a smooth function.
Since ∂Ω is compact, we can cover it with a finite number of such neighborhoods.
A smooth partition of unity can then be used to restrict the estimate to one such
neighborhood. (For partition of unity in R

n see, e.g., Rudin [77, Thm. 10.8].)
It thus suffices to consider the case where supp u ∈ U ⊂ R

n, where ∂Ω ∩ U is
the graph of a smooth function. After an interchange of coordinates, if necessary,
we can assume that

U ∩Ω = {x ∈ U : xn > ϑ(x1, . . . , xn−1)},

for some smooth function ϑ .
We can now apply a simple coordinate change on U to straighten the boundary.

For x ∈ U define the map y = F(x) by,

yj =
{
xj , j = 1, . . . , n− 1,

xn − ϑ(x1, . . . , xn−1), j = n,
(6.24)

so that F(U ∩Ω) is the set {yn ≥ 0}, as illustrated in Figure 6.4. The inverse map
is given by xn = yn + ϑ(y1, . . . , yn−1), so it is clear that F is a diffeomorphism.

By Lemma 6.13, it suffices to prove the result in the new coordinates. We can thus
specialize to the case where u is a compactly supported function inHm(Rn+), where
R
n+ = {xn > 0}. We need to extend u across xn = 0 to a function ũ ∈ Hm(Rn).
For this construction, suppose first that u ∈ C∞0 (Rn+). Such a function admits

a smooth extension across the boundary, by definition. The point here is to control
this extension so that (6.23) holds. The strategy is to use rescaled reflections of u.

For a set of coefficients c1, . . . , cm+1 ∈ C, consider the ansatz,

ũ(x) :=

⎧
⎪⎪⎨
⎪⎪⎩

u(x), xn ≥ 0,

m+1∑
j=1

cju

(
x1, . . . , xn−1,−xn

j

)
, xn < 0.

(6.25)
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Ω

U

xn = ϑ

F (Ω)

F (U)

yn = 0

Fig. 6.4 Using a change of coordinates to flatten the boundary

The function ũ is continuous provided
∑
cj = 1, and this condition also implies that

partial derivatives involving only the variables x1, . . . , xn−1 are continuous across
the boundary.

To match up the xn derivatives, we compute

∂lũ

∂xln

∣∣∣
xn→0−

=
m+1∑
j=1

(−j)−lcj ∂
lu

∂xln

∣∣∣
xn=0

.

After comparing this to (6.25), we see that ũ ∈ Cm(Rn) under the condition

m+1∑
j=1

(−j)1−icj = 1, (6.26)

for i = 1, . . . , m+ 1. This linear system has coefficient matrix

Mij := (−j)−i+1,

and to show that (6.26) has a solution we simply need to know that detM �= 0.
The matrix M is of Vandermonde type, and a simple induction argument gives the
determinant formula,

detM =
∑

1≤i<j≤m+1

(
1

i
− 1

j

)
,

which is nonzero. Therefore, there exists a unique choice of c1, . . . , cm+1 satisfying
(6.26). For example, for m = 1 the solution is c1 = −3 and c2 = 4.

Using the set of coefficients that solves (6.26) in (6.25) gives ũ ∈ Cm0 (R
n).

Moreover, since the cj depend only on m, it is clear that (6.23) holds for all
u ∈ C∞0 (Rn+).
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Now suppose u ∈ Hm(Rn+). To make use of the extension constructed above, we
need to approximate u by smooth functions, a process called mollification. Suppose
ψ ∈ C∞0 (Rn) has support in {|x| < 1} and satisfies

∫

Rn

ψ dnx = 1. (6.27)

For x ∈ R
n+ and ε > 0, we define a shifted convolution,

uε(x) :=
∫

|y|<1
ψ(y)u(x + εen − εy) dny,

where en is the unit vector in the xn direction. (The shift in the xn variable keeps
the argument of u within R

n+.) By the dominated convergence theorem, uε → u in
L2(Rn+) as ε→ 0.

Moreover, a simple change of variables gives

uε(x) =
∫

|y|<1
ψ((x − y)/ε + en)u(y) dny.

We can then differentiate under the integral to see that uε ∈ C∞(Rn+), with

Dαuε(x) =
∫

|y|<1
Dα
x

[
ψ
(
ε−1(x − y)+ en

)]
u(y) dny

= (−1)|α|
∫

|y|<1
Dα
y

[
ψ
(
ε−1(x − y)+ en

)]
u(y) dny.

Since Dαu exists as a weak derivative for |α| ≤ m, this implies

Dαuε(x) =
∫

|y|<1
ψ
(
ε−1(x − y)+ en

)
Dαu(y) dny

=
∫

|y|<1
ψ(y)Dαu(x + εen − εy) dny.

This shows that Dαuε → Dαu in L2(Rn) for |α| ≤ m. Hence uε → u in Hm(Rn+).
Now let ũε be the extension of uε to R

n as defined above. Since we have already
shown that (6.23) applies to uε ∈ C∞(Rn+), the convergence uε → u implies that
the sequence {ũε} is Cauchy in Hm(Rn). Therefore, the limit

ũ := lim
ε→0

ũε

exists in Hm(Rn).
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As noted above, this local argument can be applied to u ∈ Hm(Ω) using a
partition of unity. 
�

It is easy to see that the extension result of Lemma 6.14 actually requires only
that ∂Ω is Cm. In fact, with a more careful argument, this boundary requirement can
be relaxed to the assumption that ∂Ω is of the Hölder class Cm−1,1; see Gilbarg and
Trudinger [36, Thm. 7.25]. In particular, for m = 1 this means that the boundary is
required to be Lipschitz continuous.

To conclude this section, we use Lemma 6.14, in conjunction with Corol-
lary 6.11, to complete the proof of Rellich’s theorem.

Proof of Theorem 6.9 First consider the embedding of H 1
0 (Ω) into L2(Ω). By

translating and rescaling if needed, we can assume that Ω ⊂ (0, 2π)n. This allows
us to extend a compactly supported function on (0, 2π)n to periodic function on
T
n. Using this periodic extension along with the extension property of Lemma 6.12

gives an isometry

H 1
0 (Ω)→ H 1(Tn). (6.28)

Suppose {vk} ⊂ H 1
0 (Ω) is a bounded sequence, and let {ṽk} denote the

corresponding periodic extensions in H 1(Tn). By Corollary 6.11, there exists a
subsequence of {ṽk} converging in L2(Tn). The corresponding subsequence of {vk}
then converges in L2(Ω).

The argument is almost the same for H 1(Ω), except that the extension result
requires an extra hypothesis. If ∂Ω is smooth, this extension is covered by
Lemma 6.14. For the more general condition that ∂Ω is Lipschitz, we cite the
stronger extension result mentioned above [36, Thm. 7.25]. 
�

6.3 Regularity of Eigenfunctions

The eigenfunctions provided by Theorem 6.8 are required to solve−�ψ = λψ only
in the weak sense. In this section, we will show that the weak eigenvalue equation
requires ψ to be smooth, so that eigenfunctions are in fact classical solutions.

This argument, a special case of elliptic regularity from PDE theory, is relatively
easy if we restrict our attention to the interior of Ω . Suppose ψ is an eigenfunction
for either the Dirichlet or Neumann Laplacian on a bounded open set Ω ⊂ R

n. For
χ ∈ C∞0 (Ω), we can extend χψ by zero to a function inH 1(Rn). By the eigenvalue
equation for u,

−�(χψ) = λχψ − [�,χ ]ψ. (6.29)



144 6 The Laplacian with Boundary Conditions

The commutator [�,χ ] is a differential operator of order one, so the right-hand side
of (6.29) lies in L2(Rn). The Fourier transform of the left-hand side is |ξ |2χ̂ψ . By
(2.26), this shows that χψ ∈ H 2(Rn). This puts the right-hand side of (6.29) in
H 1(Rn). Iterating this argument shows that χψ ∈ Hm(Rn) for allm, which implies
χψ ∈ C∞(Rn) by Theorem 2.26. Since χ was arbitrary, this shows that

ψ ∈ C∞(Ω). (6.30)

It follows from Lemma 2.22 that ψ satisfies the eigenvalue equation in the classical
sense.

In fact, we can go further than smoothness. A function Ω → R is real analytic
if it is locally representable by power series. That is, the Taylor series at each
point converges to the function in a neighborhood. Harmonic functions (solutions
of �u = 0) are real analytic, and this property extends to eigenfunctions of the
Laplacian.

Theorem 6.15. For an open set Ω ⊂ R
n, suppose that ψ ∈ H 1(Ω) satisfies

−�ψ = λψ in the weak sense, for λ ∈ R. Then ψ is a real analytic function
on Ω .

Before proving this result, let us note that both (6.30) and Theorem 6.15 are only
concerned with regularity in the interior. It is possible to extend regularity results up
to the boundary, but this requires a corresponding degree of regularity of ∂Ω . For
example, if ∂Ω is smooth, then the eigenfunction satisfies ψ ∈ C∞(Ω). We will
defer this boundary regularity discussion to the more general context of Riemannian
manifolds; see Section 9.4.2 and Appendix A.4.

The existence of a local power series representation implies that if a real analytic
function vanishes to infinite order at a point, then it vanishes identically on the entire
connected component of the domain. The proof is the same as for holomorphic
functions in complex analysis. Thus Theorem 6.15 has the following:

Corollary 6.16 (Unique Continuation). Assume that Ω ⊂ R
n is a connected

open set. If ψ ∈ Ω satisfies −�ψ = λψ and vanishes to infinite order at a point in
Ω , then ψ ≡ 0.

The unique continuation property holds more generally for solutions of elliptic
partial differential equations, even in the nonanalytic case, by a result of Aronszajn
[2].

Our strategy for the proof of Theorem 6.15 is based on the construction of a
real analytic integral kernel for (−�Rn − λ)−1 for λ > 0. This is closely related
to the resolvent kernel construction in Section 4.1.3, where we produced a Green’s
function G(κ; r) for −�+ κ2 acting on R

n, with Re κ > 0. Here we seek a kernel
function G(ik; r) for k > 0, which will satisfy
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φ(x) = (−�− k2)

∫

Rn

G(ik; |x − y|)φ(y) dny

=
∫

Rn

G(ik; |x − y|)(−�− k2)φ(y) dny,

(6.31)

for φ ∈ C∞0 (Rn). Note that the fact that λ = k2 lies in the spectrum does not rule out
a solution of (6.31). It just means that G(ik; r) cannot be the kernel of a bounded
operator on L2.

Lemma 6.17. For λ > 0 and x ∈ R
n, the function

G(ik; r) := −π
2
(2π)−

n
2

( r
k

)1− n
2
Yn

2−1(kr), (6.32)

where Yν(z) denotes the Bessel function, satisfies (6.31).

Proof We start by noting that, because the action of (−� − k2) is local, the first
line of (6.31) implies that

(−�− k2)G(ik; |x|) = 0

for x �= 0. As a radial equation, this translates to

∂2G

∂r2 +
n− 1

r

∂G

∂r
+ k2G = 0.

for r > 0. By setting z = kr and G(ik; r) = z−νf (z) with ν := n/2 − 1, we can
reduce this to the Bessel equation

z2f ′′ + zf ′ + (z2 − ν2)f = 0. (6.33)

The solutions are linear combinations of the Bessel functions Jν(z) and Yν(z).
The function |x|−νJν(k|x|) is smooth at x = 0. We can see from the calculation
in Section 4.1.3 that the Green’s function should have a singularity at the origin.
Therefore, we make the ansatz

G(ik; r) := az−νYν(z), (6.34)

for some constant a.
The two integral formulas in (6.31) are equivalent for φ ∈ C∞0 (Rn), by

integration by parts, so we can focus on the second. By a change of variables it
suffices to prove this at the origin, i.e.,

φ(0) =
∫

Rn

G(ik; |y|)(−�− k2)φ(y)dny. (6.35)
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Since (6.34) is locally integrable, we can rewrite the integral as a limit

∫

Rn

G(ik; |y|)(−�− k2)φ(y)dny = lim
ε→0

∫

{r≥ε}
G(ik; |y|)(−�− k2)φ(y) dny.

Note that the integral avoids the singularity at the origin, so we can integrate by
parts, using Green’s identity, to move the operator from φ onto G. Since (−� −
k2)G = 0 away from the origin, the integral reduces to a boundary term,

∫

Rn

G(r; |y|)(−�− k2)φ(y) dny = lim
ε→0

∫

{r=ε}

(
G
∂φ

∂r
− φ ∂G

∂r

)
dS. (6.36)

As z→ 0, the Bessel Y -function satisfies the asymptotic [64, §10.7],

Yν(z) ∼

⎧
⎪⎪⎨
⎪⎪⎩

−2ν

π
�(ν)z−ν, Re ν > 0 or ν ∈ −N+ 1

2 ,

2

π
log z, ν = 0.

(6.37)

This shows that G(λ; r) = O(r2−n) for n �= 2 and O(log r) for n = 2, implying

lim
ε→0

∫

{r=ε}
G
∂φ

∂r
dS = 0, (6.38)

since the surface measure is O(rn−1). Furthermore, by the derivative formula,

∂

∂z

[
z−νYν(z)

] = −z−νYν+1(z),

we deduce from (6.37) that

∂G

∂r
∼ −1

2
π−

n
2�(n2 )r

1−n.

Since

vol(Sn−1) = 2π
n
2

�(n2 )
,

this implies that

lim
ε→0

∫

{r=ε}
φ
∂G

∂r
dS = −φ(0). (6.39)

Applying (6.38) and (6.39) to the right-hand side of (6.36) proves (6.35). 
�
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From (6.37), we can see that the behavior of G(ik; r) as r → 0 is identical to
that of G(κ; r). The reason that G(ik; r) does not correspond to a bounded operator
is the lack of sufficient decay at infinity. For example, in R

3 we have

G(ik; r) = cos(kr)

4πr
.

More generally. one can check that G(ik; r) grows like log r in dimension two and
decays like r1−n in dimension n ≥ 3.

In terms of the regularity of eigenfunctions, the key point in (6.35) is that
G(ik; |x|) is an analytic function of x for x �= 0. This follows from the fact that
Yν(·) is holomorphic on the domain C\(−∞, 0].
Proof of Theorem 6.15 Suppose ψ ∈ H 1(Ω) satisfies −�ψ = k2ψ , in the weak
sense. Let V be an open set such that V ⊂ Ω , and choose a cutoff function χ ∈
C∞0 (Ω) so that χ = 1 on V . We have already observed that ψ is smooth in (6.30),
so the function,

f := (−�− k2)(χψ)

= −[�,χ ]ψ,
is smooth and supported within supp(∇χ). In particular, f vanishes on V . By
Lemma 6.17, for x ∈ V ,

ψ(x) =
∫

Rn

G(ik; |x − y|)f (y) dny. (6.40)

SinceG(ik; |x−y|) is analytic as a function of x ∈ V for y ∈ supp(f ), this implies
that ψ is analytic on V . 
�

6.4 Eigenvalue Computations

For a bounded open set Ω ⊂ R
n, let {ψk}∞k=1 denote the set of eigenfunctions

corresponding to the Dirichlet eigenvalues (6.4). For u ∈ H 1
0 (Ω), the fact that the

eigenfunctions constitute an orthonormal basis for L2(Ω) implies that

‖∇u‖2 =
∞∑
k=1

λk |〈ek, u〉|2.

This shows that

λ1 = min
u∈H 1

0 (Ω)\{0}
‖∇u‖2

‖u‖2 . (6.41)
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The ratio on the right is called the Rayleigh quotient of u. By comparing (6.41)
to the Poincaré inequality Theorem 6.5, we see that λ1 is related to the Poincaré
constant γ by

λ1 = γ−2.

The characterization of λ1 in (6.41) differs from the corresponding expression for
λ1 from Theorem 5.15 in that the minimum is taken over the quadratic form domain
H 1

0 (Ω), rather than the operator domain. It is not difficult to extend the quadratic
form version to a full statement of the min–max principle.

Theorem 6.18 (Min–Max Principle for Dirichlet Eigenvalues). Let {λk} be the
set of Dirichlet eigenvalues of a bounded open set Ω ⊂ R

n, written in increasing
order and repeated according to multiplicity. Define Λk as the set of subspaces of
H 1

0 (Ω) of dimension k. Then

λk = min
W∈Λk

{
max

u∈W\{0}
‖∇u‖2

‖u‖2

}
(6.42)

for each k ∈ N.

Proof Because the quadratic form domain H 1
0 (Ω) contains the operator domain

D(−�), Theorem 5.15 implies that

λk ≥ min
W∈Λk

{
max

u∈W\{0}
‖∇u‖2

‖u‖2

}
. (6.43)

To prove the opposite inequality, consider a general subspace W ∈ Λk . Since
dimW = k, there exists a nonzero vector

w ∈ W ∩ [ψ1, . . . , ψk−1]⊥,

where {ψj } denotes the eigenvalue basis. This implies the eigenfunction expansion,

w =
∞∑
j=k
〈w,ψj 〉ψj .

Therefore,

‖∇w‖2 =
∞∑
j=k

λj |〈w,ψj 〉|2,

which shows that

‖∇w‖2 ≥ λk‖w‖2.
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Since W was arbitrary, it follows that

λk ≤ min
W∈Λk

{
max

u∈W\{0}
‖∇u‖2

‖u‖2

}
. (6.44)

In combination with (6.43), this completes the proof. 
�
With a similar argument, we can develop a max–min formula, analogous to

(5.31):

λk = max
v1,...,vk−1∈L2(Ω)

{
min

u∈H 1
0 (Ω)∩{v1,...,vk−1}⊥\{0}

‖∇u‖2

‖u‖2

}
. (6.45)

We will discuss the corresponding formulas for Neumann eigenvalues in Sec-
tion 6.4.3.

6.4.1 Finite Element Method

Theorem 6.18 is often used to approximate eigenvalues by choosing a finite-
dimensional subspace A ⊂ H 1

0 (Ω) and computing the min–max values for the
restriction to A,

βk := min
W∈Λk(A)

{
max

u∈W\{0}
‖∇u‖2

‖u‖2

}
, (6.46)

for k = 1, . . . , m, where m = dimA and Λk(A) denotes the subspaces of A of
dimension k. This computational technique is known as the Rayleigh–Ritz method.
Clearly λk ≤ βk for each k, since Λk(A) ⊂ Λk(H).

To compute βk , we choose a basis {wk} for A, not necessarily orthonormal. Then
define the matrices

Eij := 〈∇wi,∇wj 〉, Fij = 〈wi,wj 〉,

for i, j = 1, . . . , m. A simple linear algebra argument shows that the βk are the
eigenvalues of the matrix F−1E. The idea behind the Rayleigh–Ritz method is
that βk should be a good approximation to λk , at least if k is small relative to m.
Moreover, if (c1, . . . , cm) denotes the eigenvector of F−1E corresponding to βk ,
then

∑
cjwj can be used as an approximation to the true eigenfunction φk .

Example 6.19. Consider the Dirichlet Laplacian on the interval [0, 1], for which the
spectrum is {(kπ)2}∞k=1. The Rayleigh quotient of the polynomial p1(x) = x(1 −
x) is 10, a somewhat crude approximation to π2. Suppose instead we apply the
Rayleigh–Ritz method with A given by the span of polynomials pj (x) = xj (1−x)
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Fig. 6.5 An approximation
of the sixth eigenfunction of a
star-shaped region, computed
using the finite element
method

for j = 1, . . . , 5. Then the first Rayleigh–Ritz value, β1
.= 9.8696, approximates π2

to within 10−7. The second value, β2
.= 39.50, is still a reasonable approximation

to 4π2 .= 39.48. ♦
For the Rayleigh–Ritz method to be effective, we need an efficient way to choose

a subspace A that approximates H 1
0 (Ω) reasonably well. A standard approach is

the finite element method, which involves subdividing Ω into a polygonal mesh
and then constructing A using continuous, piecewise linear functions (“elements”)
which take the value 1 at a single vertex of the mesh and vanish at all others. These
sample elements lie in H 1

0 (Ω), and the corresponding matrices E and F can be
computed quite efficiently, since most of the entries are zero. Figure 6.5 shows an
approximate eigenfunction computed using a mesh with 883 triangles.

6.4.2 Domain Monotonicity

The min–max principle proves to be very useful for eigenvalue comparisons. For
example, we have the following monotonicity property for nested domains.

Theorem 6.20. For a pair of bounded open subsets of Rn satisfying Ω ⊂ Ω̃ , the
Dirichlet eigenvalues satisfy

λk(Ω) ≥ λk(Ω̃)

for each k.

Proof For any subspace W̃ ⊂ H 1
0 (Ω̃) of dimension k we have

λk(Ω̃) ≤ max
u∈W̃\{0}

‖∇u‖2

‖u‖2 , (6.47)

by (6.42). Let {ψk} denote the eigenfunctions of−�D on Ω . By Lemma 6.12, these
functions interpreted as elements of H 1

0 (Ω̃) by extension by zero. Setting W̃ equal
to span{ψ1, . . . , ψk} in (6.47) then gives the result. 
�
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The counting function for Dirichlet eigenvalues is defined as

NΩ(t) := #
{
λk ∈ σ : λk ≤ t

}
. (6.48)

Theorem 6.20 immediately yields a rough estimate of NΩ(t), by comparison to
the counting function for a domain whose eigenvalues are known, such as the
rectangular domain from Example 6.1. If R1 ⊂ Ω ⊂ R2, then

NR2(t) ≤ NΩ(t) ≤ NR1(t). (6.49)

To put this to use, we need to compute the asymptotic behavior ofNR(t) as t →∞.
Let ωn be the volume of the unit ball in R

n,

ωn := π
n
2

�(n2 + 1)
. (6.50)

Lemma 6.21. The Dirichlet eigenvalue counting function for a rectangular region
R satisfies the asymptotic

NR(t) ∼ (2π)−nωn vol(R)t n2 , (6.51)

as t →∞. This implies the eigenvalue asymptotic,

λk ∼ (2π)2
(

k

ωn vol(R)

)2/n

, (6.52)

as k→∞.

Proof If the side lengths of R are labeled �1, . . . �n, then by Example 6.1,

NR(t) = #

{
ν ∈ N

n :
n∑
j=1

π2ν2
j

�2
j

≤ t

}
.

To estimate this counting function, consider the elliptical sector

E(r) :=
{
x ∈ (R+)n :

n∑
j=1

π2x2
j

�2
j

≤ r2
}
.

Each lattice point counted in NR(t) corresponds to a unit cube contained in E(
√
t).

The union of these cubes is illustrated as the shaded region in Figure 6.6. This
inclusion gives the upper bound

NR(t) ≤ volE(
√
t).
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Fig. 6.6 Estimating the
counting function NR(t)

E(
√

t)

E(
√

t − c)

On the other hand, E(
√
t − c) is contained within the union of cubes for c =

π
√
n/min(�j ), so that

NR(t) ≥ volE(
√
t − c).

The volume of the elliptical sector is

volE(r) = ωnr
n

n∏
j=1

�j

2π
.

Noting that
∏
�j = vol(R), we deduce that

NR(t) = (2π)−nωn vol(R)t n2 +O(t(n−1)/2), (6.53)

as t →∞.
The corresponding eigenvalue asymptotic (6.52) follows immediately from the

observation that λk ≤ t < λk+1 for k = NR(t). 
�
Using (6.49) and Lemma 6.21, we can now derive a growth estimate for NΩ(t).

The symbol � means that the ratio of the two sides is bounded above and below by
strictly positive constants.

Corollary 6.22. For the Dirichlet Laplacian on a bounded open set Ω ⊂ R
n, the

eigenvalue counting function satisfies

NΩ(t) � tn/2.

Equivalently,

λk � k2/n.

We will see in Section 6.5 that the crude estimate of Corollary 6.22 can be refined
into an asymptotic of the form (6.51) for any bounded open set. This formula is
called Weyl’s law.
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Fig. 6.7 Approximating a
domain from within by a
finite union of rectangles

One way to obtain this refinement is by noting that the comparison principle of
Theorem 6.20 does not require the domains to be connected. Suppose we take a
finite disjoint union of rectangles Qj contained in Ω , as illustrated in Figure 6.7.
Then

λk(Ω) ≤ λk(∪mj=1Qj ). (6.54)

The upper bound in (6.49) can thus be replaced by

NΩ(t) ≤
m∑
j=1

NQj
(t).

By taking families of disjoint rectangles that approximate Ω arbitrarily well in
terms of Lebesgue measure, we can derive from this method a sharp estimate of
lim supt→∞NΩ(t).

6.4.3 Neumann Eigenvalues

There is an important relationship between Dirichlet and Neumann eigenvalues
that proves useful in the analysis of both cases. It follows immediately from the
Neumann case of the min–max principle.

Let Ω ⊂ R
n be a bounded open set with boundary satisfying the regularity

assumption of Theorem 6.8, i.e., ∂Ω is at least Lipschitz continuous. To avoid
confusion with the Dirichlet case, we write the Neumann eigenvalues as

0 = μ1 ≤ μ2 ≤ μ3 ≤ . . . ,

where eigenvalues are repeated according to multiplicity. (The zero eigenvalue could
be repeated only if Ω has more than one connected component.)

The same arguments used in the proof of Theorem 6.18, with H 1
0 (Ω) replaced

by H 1(Ω), yield the following:
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Theorem 6.23 (Min–Max Principle for Neumann Eigenvalues). For a Ω ⊂ R
n

a bounded open set with boundary at least Lipschitz continuous, let Λk denote the
set of subspaces of H 1(Ω) of dimension k. The Neumann eigenvalues of −� are
given by

μk = min
W∈Λk

{
max

u∈W\{0}
‖∇u‖2

‖u‖2

}
(6.55)

for each k ∈ N.

Note that the Neumann version of the min–max formula includes a larger class of
subspaces than the Dirichlet. It follows immediately that the Neumann eigenvalues
will be smaller.

Corollary 6.24 (Dirichlet–Neumann Comparison). For a Ω ⊂ R
n as above, the

Dirichlet and Neumann eigenvalues of −� are related by

μk ≤ λk,

for all k ∈ N.

Despite this direct comparison between Dirichlet and Neumann eigenvalues, the
domain monotonicity property established for the Dirichlet case in Theorem 6.20
does not hold in the Neumann case. The argument from the Dirichlet case does
not apply here because elements of H 1(Ω) do not generally admit extensions that
preserve the Rayleigh quotient. We can easily find counterexamples that show the
failure of monotonicity.

Example 6.25. Let Ω be the unit square in R
2. For a ∈ (0, 1], define a rectangle R

insideΩ with vertices (a, 0), (0, a), (1−a, 1), and (1, 1−a), as shown in Figure 6.8.
Suppose the Neumann eigenvalues of each domain are written as

0 = μ1 ≤ μ2 ≤ μ2 ≤ . . . .

For a < 1
2 , we have

μ2(Ω) = π2, μ2(R) = π2

2(1− a)2 .

Thus μ2(R) could be either larger or smaller than μ2(Ω), depending on whether a
is greater or less than 1− 1√

2
. ♦

There is a very restrictive form of the domain monotonicity result that holds for
Neumann eigenvalues. To see this, consider the max–min formula,

μk = max
v1,...,vk−1∈L2(Ω)

{
min

u∈H 1(Ω)∩{v1,...,vk−1}⊥\{0}
‖∇u‖2

‖u‖2

}
. (6.56)
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Fig. 6.8 Counterexample for
Neumann domain multiplicity

If Ω̃\Ω has measure zero, then H 1(Ω̃) can be regarded as subspace of H 1(Ω) by
restriction. Moreover, L2(Ω) = L2(Ω̃) under this assumption. Since the restriction
map does not change the Rayleigh quotient, we obtain from (6.56) the following:

Lemma 6.26 (Restricted Neumann Domain Monotonocity). Suppose that Ω ⊂
Ω̃ are open subsets of Rn with Lipchitz continuous boundary, such that Ω̃\Ω has
measure zero. Then

μk(Ω) ≤ μk(Ω̃)

for each k.

A typical case for Lemma 6.26 is the subdivision of a domain by adding internal
boundaries. For example, a domain with rectangular sides can be cut into a finite
union of rectangles. As noted in Section 6.4.2, such a subdivision causes the
Dirichlet eigenvalues to increase, but by Lemma 6.26 the Neumann eigenvalues
would decrease.

This idea can be used to provide a corresponding lower bound to (6.54). Suppose
{Ri} is a finite collection of disjoint rectangles, such thatΩ is contained in the union
of the closures of the Ri . By the combination of Theorem 6.20, Corollary 6.24, and
Lemma 6.26, we have

λk(Ω) ≥ μk(∪Ri ). (6.57)

Estimating eigenvalues by comparison to rectangles, using a combination of (6.54)
and (6.57), is referred to as Dirichlet–Neumann bracketing.

6.5 Asymptotics of Dirichlet Eigenvalues

In this section we will develop a proof of Weyl’s law, the asymptotic formula for
the eigenvalue counting function NΩ(t) mentioned in Section 6.4.2. This asymp-
totic had been conjectured independently by Lorentz and Sommerfeld in 1910.
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Hermann Weyl proved it in 1911, for two-dimensional domains with sufficiently
regular boundary, using the Dirichlet–Neumann bracketing method described in the
preceding section.

Theorem 6.27 (Weyl’s Law). For the Dirichlet Laplacian on a bounded open set
Ω ⊂ R

n,

NΩ(t) ∼ (2π)−nωn vol(Ω)t
n
2

as t →∞, where ωn is the volume of the unit ball in R
n, (6.50). Equivalently, if the

eigenvalues are arranged in increasing order

λk ∼ (2π)2
(

k

ωn vol(Ω)

)2/n

as k→∞.

Example 6.28. In the early nineteenth century, Gabriel Lamé [56] computed the
spectrum of an equilateral triangle using trigonometric polynomials. For an equi-
lateral triangle T with side length �, a complete set of Dirichlet eigenvalues (with
multiplicities) is given by

λk,m = 16π2

9�2
(k2 + km+m2),

for k,m ∈ N. A sample eigenfunction is shown in Figure 6.9.
We can interpret NT (t) as the count of integer lattice points within the elliptical

sector

E(t) :=
{
x ≥ 0, y ≥ 0,

16π2

9�2 (x2 + xy + y2) ≤ t

}
.

As in Lemma 6.21, this implies that

NT (t) ∼ areaE(t).

Fig. 6.9 A Lamé
eigenfunction on the
equilateral triangle
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In polar coordinates, x2 + xy + y2 = r2(1+ 1
2 sin 2θ), which allows us to compute

areaE(t) = 9�2

16π2t

∫ π/2

0

dθ

2+ sin 2θ

=
√

3�2

4

t

4π
.

Since T has area
√

3�2/4, this agrees with the asymptotic stated in Theorem 6.27.
♦

One obvious consequence of Weyl’s law is the fact that the volume of Ω is
fixed by its spectrum. This naturally invites the question of what other geometric
properties of Ω are determined by the spectrum. For example, Åke Pleijel proved
in 1954 [67] that the length of ∂Ω is determined by the spectrum if Ω is a two-
dimensional domain with smooth boundary.

The question of whether Ω is completely determined by its spectrum was
memorably formulated in a famous 1966 article by Mark Kac [48], titled “Can
you hear the shape of a drum?” (Kac credits Lipman Bers as the source of this
eloquent phrasing.) The question was answered in the negative by Carolyn Gordon,
David Webb, and Scott Wolpert [38] in 1992. An example of a pair of “isospectral”
domains is shown in Figure 6.10. Many other polygonal counterexamples have been
found. However, for domains with smooth boundary, Kac’s question remains open.

Fig. 6.10 Bounded open sets in R
2 with the same Dirichlet eigenvalues

6.5.1 Strategy for the Proof

Although Weyl considered only the two-dimensional case of Theorem 6.27, his
Dirichlet–Neumann bracketing argument generalizes easily to higher dimensions.
However, this approach does impose a regularity assumption on ∂Ω , arising from
the approximation of Ω by finite collections of rectangles. We can approximate
vol(Ω) from the inside by a finite union of open rectangles, to arbitrary precision
with respect to Lebesgue measure. Similarly, we can approximate vol(Ω) to
arbitrary precision with a covering by finitely many closed rectangles. The problem
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is that these inner and outer volumes may not be equal. The bracketing argument is
restricted to sets for which vol(∂Ω) = 0, which are called Jordan measurable.

A different approach to the Weyl asymptotic was introduced by Torsten Carleman
[18] in 1934, based on an asymptotic analysis of the resolvent kernel of the Dirichlet
Laplacian. Carleman’s method paved the way for more modern approaches to Weyl
asymptotics, involving the heat and wave operators. It also yields local information
about the distribution of eigenfunctions; see Exercise 6.5.

Lars Gårding [34] later applied Carleman’s approach to the case of arbitrary
uniformly elliptic operators, even possibly non-self-adjoint. Our presentation in
this section essentially follows Gårding’s, although we restrict our attention to the
Laplacian to simplify the exposition.

The argument is based on analysis of the asymptotic behavior of the resolvent
of −h2� + 1 as h → 0. The use of the letter h here reflects the fact that the
Schrödinger operator in quantum mechanics has −h̄2� as its leading term, where
h̄ is Planck’s constant. The “correspondence principle” of quantum mechanics says
that classical physics should be recovered by rescaling units so that h̄→ 0. Because
of this connection, studying the limiting behavior of an operator such as −h2�+ 1
as h→ 0 is called semiclassical analysis. (See, e.g., Zworski [97].)

The full proof of the Weyl law is rather involved and will be spread out into a
few subsections. The major steps are as follows:

Section 6.5.2 We work out the asymptotics of the kernel of (−h2� + 1)−m as
h→ 0, for m ∈ N.

Section 6.5.3 For m sufficiently large, the operator (−h2�+ 1)−m is trace-class.
The pointwise asymptotics of its kernel are used to derive a limiting
formula for the trace of (−h2�+ 1)−m as h→ 0.

Section 6.5.4 The resolvent trace is written as a sum over eigenvalues, and the
Weyl formula is deduced from the asymptotic behavior of this sum
as h→ 0, using a Tauberian theorem.

6.5.2 Asymptotics of the Resolvent Kernel

On a bounded domain Ω ⊂ R
n, we define the differential operator

P(h) := −h2�+ 1

for h > 0. For the proof of the Weyl formula, we will need to distinguish
between this differential operator and its self-adjoint extensions on various domains.
Let A(h) denote the realization of P(h) as a self-adjoint operator on L2(Ω)

with Dirichlet boundary conditions, defined as in Section 6.1, with D(A(h)) =
D(−�) ⊂ H 1

0 (Ω). Let A0(h) denote the self-adjoint extension of P(h) to L2(Rn),
with D(A0(h)) = H 2(Rn).



6.5 Asymptotics of Dirichlet Eigenvalues 159

Note that the inverses A(h)−1 and A0(h)
−1 are proportional to the respective

resolvents, (−�D + h−2)−1 and −(�Rn + h−2)−1. These inverses therefore exist
for all h > 0 as bounded operators on L2(Ω) and L2(Rn), respectively.

The main point of Carleman’s strategy is to analyze the semiclassical limit of a
trace over the eigenvalues of A(h). Although A(h)−1 is not trace-class, we can form
a related trace-class operator by taking the power A(h)−m for m sufficiently large.
Our goal is to express the leading term in the trace of A(h)−m, as h→ 0, in terms
of the kernel of A0(h)

−m.
As a first step, let us work out the explicit formula for the kernel ofA0(h)

−m. The
case m = 1 was already covered in Section 4.1.3, where the result was expressed in
terms of the modified Bessel function,

Kν(z) := 1

2

( z
2

)ν ∫ ∞

0
tν−1e−t−z2/4t dt, (6.58)

for ν ∈ R and z > 0.

Lemma 6.29. For φ ∈ C∞0 (Rn) and m > 0,

A0(h)
−mφ(x) =

∫

Rn

Φm(h; |x − y|)φ(y) dny,

where

Φm(h; r) = 21−m(2π)−n/2

�(m)
h−m−

n
2 rm−

n
2Km− n

2
(r/h),

and Kν is given by (6.58).

Proof Since the action of A0(h) is conjugate to multiplication by h2|ξ |2+ 1 under
the Fourier transform,

A0(h)
−mφ(x) = (2π)−

n
2

∫

Rn

eix·ξ φ̂(ξ)

(h2|ξ |2 + 1)m
dnξ. (6.59)

To compute the integral over ξ , we substitute

(h2|ξ |2 + 1)−m = 1

�(m)

∫ ∞

0
tm−1e−t (h2|ξ |2+1) dt

into (6.59), and then use

∫

Rn

eix·ξ−th2|ξ |2 dξ =
( π
th2

)n
2
e−|x|2/4th2

.
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Applying these computations to (6.59) yields

Φm(h; r) = (4π)− n
2

�(m)
h−n

∫ ∞

0
tm−

n
2−1e−t−r2/4th2

dt.

The claimed formula then follows by setting z = r/h and ν = m − n/2 in the
definition (6.58). 
�

The next step is to relate the kernel of A(h)−m to Φm(h; r). The crucial
observation for this purpose is that A(h) and A0(h) are extensions of the same
differential operator P(h). In the following argument, we will consider a more
general extension P̃ (h), such that A(h) ⊂ P̃ (h). We will eventually need to apply
this result not just to A(h), but also to the Dirichlet extension of P(h) on a larger
bounded open set containing Ω .

Theorem 6.30. Let Ω ⊂ R
n, and suppose that P̃ (h) is a self-adjoint extension of

P(h) with a domain that includes C∞0 (Ω). For a fixed m ∈ N, there exists a kernel
function !(h; ·, ·) ⊂ C∞(Ω ×Ω) such that

〈
φ1, P̃ (h)

−mφ2
〉 = 〈φ1, A0(h)

−mφ2
〉+
∫

Ω

∫

Ω

!(h; x, y)φ1(y)φ2(y
′) dny dny′

for φ1, φ2 ∈ C∞0 (Ω), with

!(h; x, y) = O(h∞),

as h→ 0, uniformly on compact subsets of Ω ×Ω .

Proof Our goal is to find an integral formula for the sesquilinear form on C∞0 (Ω)

defined by

η[φ1, φ2] :=
〈
φ1,
(
P̃ (h)−m − A0(h)

−m)φ2
〉
.

Note that, because both P̃ (h) and A0(h) reduce to P(h) on C∞0 (Ω), we have

η
[
P(h)mφ1, φ2

] = η
[
φ1, P (h)

mφ2
] = 0, (6.60)

for all φ1, φ2 ∈ C∞0 (Ω).
Fix an open set V such that V ⊂ Ω , and assume now that φ1, φ2 ∈ C∞0 (V ).

Choose χ ∈ C∞0 (Ω) such that χ = 1 on some open neighborhood of V . We can
deduce from (6.59) that the functions A0(h)

−mφj are smooth, by the arguments
used to prove Sobolev embedding (Theorem 2.26). Thus, using (6.60) and the fact
that P(h)mA−m0 φj = φj , we have the identity,

η[φ1, φ2] = η
[
P(h)m(1− χ)A0(h)

−mφ1, P (h)
m(1− χ)A0(h)

−mφ2

]
. (6.61)
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By the formula from Lemma 6.29,

P(h)m(1− χ)A0(h)
−mφj (x) =

∫

V

b(x, y)φj (y) d
ny, (6.62)

where

b(x, y) := (−h2�x + 1)m
[
(1− χ(x))Φm(h; |x − y|)

]
, (6.63)

for x ∈ R
n, y ∈ V . The function b(·, y) is smooth for each y ∈ V , becauseΦm(h, r)

is smooth for r > 0 and 1 − χ vanishes in some neighborhood of V . Furthermore,
for y ∈ V we have supp b(·, y) ⊂ supp(∇χ), because

(−h2�x + 1)mΦm(h; |x − y|) = 0 (6.64)

for x �= y.
Therefore, we can combine (6.62) with (6.61) and apply Fubini’s theorem to

deduce that

η[φ1, φ2] =
∫

V

∫

V

!(h; y, y′)φ1(y)φ2(y
′) dny dny′, (6.65)

where

!(h; y, y′) := η[b(·, y), b(·, y′)]. (6.66)

By the properties of b(·, ·) noted above, the kernel !(h; ·, ·) is smooth on V × V .
Since ‖P̃ (h)−1‖ ≤ 1 and ‖A0(h)

−1‖ = 1, we obtain from (6.66) the estimate

|!(h; y, y′)| ≤ 2‖b(·, y)‖‖b(·, y′)‖. (6.67)

The Bessel function Kν(z) and its derivatives are O(e−z) as z→ +∞. This means
that Φm(h; |x − y|) and its derivatives can be estimated by O(e−c/h) for c > 0, as
long as |x − y| is bounded away from zero. By the definition (6.63), supp b(·, ·) ⊂
supp(∇χ)× V . Since dist(supp(∇χ), V ) > 0, we can deduce from (6.63) that

sup
x,y
|b(x, y)| = O(e−c/h)

for some c > 0. Hence (6.67) gives the estimate

sup
y,y′∈V

|!(h; y, y′)| = O(e−c/h). (6.68)

The constants in this estimate depend on χ and V .



162 6 The Laplacian with Boundary Conditions

Suppose we apply the same construction on a larger subset V1, to produce a
kernel function !1. The fact that (6.65) holds for both ! and !1, provided φ1, φ2 ⊂
C∞0 (V ), shows that !1 agrees with ! on V×V . Thus, there exists a unique extension
of ! to a smooth function onΩ×Ω . From (6.68) we can derive the claimedO(h∞)
bound on ! in any compact subset of Ω ×Ω . 
�

The lack of uniformity in Theorem 6.30 is a technical problem that we will
address in our study of trace asymptotics in Section 6.5.3. At this point we can
only use the result to derive a local version of the asymptotic. Let {ψk} denote the
eigenfunctions of −�D on Ω , corresponding to the eigenvalues {λk}. Each ψk is
also an eigenfunction of A(h)−m, with

A(h)−mψk = (h2λk + 1)−mψk.

Setting P̃ (h) = A(h) in Theorem 6.30 yields the following:

Corollary 6.31. For m > n/2,

∞∑
k=1

ψk(x)ψk(y)

(h2λk + 1)m
=

⎧
⎪⎨
⎪⎩
(4π)−

n
2
�(m− n

2 )

�(m)
h−n +O(h−n+1), x = y,

O(h∞), x �= y,

uniformly on compact subsets of Ω ×Ω as h→ 0.

Proof By the estimate λk � k2/n from Corollary 6.22, the sum

Km(h; x, y) :=
∞∑
k=1

ψk(x)ψk(y)

(h2λk + 1)m
(6.69)

converges in L2(Ω ×Ω) for m > n/4. This defines an integral kernel for A(h)−m,
which is therefore a Hilbert–Schmidt operator.

By Theorem 6.30, the integral kernel could also be written as

Km(h; x, y) = Φm(h; |x − y|)+ !(h; x, y),
where Φm is the kernel function computed in Lemma 6.29. For the Bessel function
Kν(z), we can deduce from (6.58) the asymptotic as z→ 0,

Kν(z) ∼ 2ν−1�(ν)z−ν, (6.70)

for ν > 0. Therefore, Φm(h; r) is continuous at r = 0 for m > n/2. In this case,
Km(h; ·, ·) is continuous on Ω ×Ω . Mercer’s theorem (Theorem 4.23) then shows
that the expansion (6.69) converges uniformly on compact sets.

It now follows from Theorem 6.30 that

Km(h; x, y) = Φm(h; |x − y|)+O(h∞),
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form > n/2, uniformly on compact sets. If |x−y| is bounded away from zero, then
the O(h∞) estimate follows from the exponential decay of Kν(z) as z→+∞. For
the leading term on the diagonal, we can deduce from (6.70) that

Φm(h; 0) = (4π)−
n
2
�(m− n

2 )

�(m)
h−n

for m > n/2. 
�

6.5.3 Trace Asymptotics

To complete the proof of Theorem 6.27, we need to establish the analog of
Corollary 6.31 for

tr
[
A(h)−m

] =
∞∑
k=1

1

(h2λk + 1)m
,

with m > n/2. By Theorem 4.24, the trace can be computed as the integral of the
restriction of the kernel to the diagonal,

tr
[
A(h)−m

] =
∫

Ω

Km(h; x, x)dnx, (6.71)

where Km(h; ·, ·) is defined by (6.69). We cannot simply integrate the asymptotic
from Corollary 6.31, however, because that result is not uniform at the boundary.

Theorem 6.32. Let {λk} be the Dirichlet eigenvalues of a bounded open set Ω ⊂
R
n. For m > n/2,

∞∑
k=1

1

(h2λk + 1)m
∼ (4π)−

n
2
�(m− n

2 )

�(m)
vol(Ω)h−n

as h→ 0.

Proof For convenience, set

cm,n := (4π)−
n
2
�(m− n

2 )

�(m)
,

By Fatou’s lemma, multiplying (6.71) by hn and using the limit from Corollary 6.31
gives

lim inf
h→0

[
hn

∞∑
k=1

1

(h2λk + 1)m

]
≥ cm,n vol(Ω). (6.72)

In other words, we have established the lower bound half of the claimed asymptotic.
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For the bound from above, we must work around the lack of uniformity in the
estimate of !(h; ·, ·) in Theorem 6.30. For this purpose, let us consider a slightly
larger bounded open set Ω̃ ⊂ R

n, such that Ω̃ ⊃ Ω . Let B(h) denote the Dirichlet
extension of P(h) on Ω̃ .

We claim that

〈
f,A(h)−1f

〉 ≤ 〈f,B(h)−1f
〉

(6.73)

for f ∈ L2(Ω), where on the right-hand side f is interpreted as an element of
L2(Ω̃) after extending by zero. To show this, let β[·, ·] denote the inner product on
H 1

0 (Ω) associated with B(h),

β[u, v] := 〈u,B(h)v〉.
For f ∈ L2(Ω),

〈
f,A(h)−1f

〉 = 〈B(h)B(h)−1f,A(h)−1f
〉

= β
[
B(h)−1f,A(h)−1f

]
.

Thus, by Cauchy–Schwarz,

〈
f,A(h)−1f

〉2 ≤ ∥∥B(h)−1f
∥∥2
β

∥∥A(h)−1f
∥∥2
β

= 〈f,B(h)−1f
〉 〈
A(h)−1f,B(h)A(h)−1f

〉
.

(6.74)

Because A(h) ⊂ B(h), we have

B(h)A(h)−1f = f

for f ∈ L2(Ω). Thus (6.73) follows from (6.74).
Since the estimate (6.73) is restricted to functions on the smaller domain, in order

to make use of it we need to introduce a cutoff version of B(h)−1. Let PΩ be the
restriction map L2(Ω̃)→ L2(Ω), and define

Q(h) := PΩB(h)
−1,

as an operator on L2(Ω). Since B(h)−1 is positive and compact, Q(h) is also
positive and compact. The eigenvalues of Q(h) are bounded above by those of
B(h)−1, by the max–min principle (Theorem 4.22). Hence Q(h)m is trace-class
for m > n/2.

From (6.73), we have

〈f,A(h)−1f 〉 ≤ 〈f,Q(h)f 〉
for f ∈ L2(Ω). Thus, the max–min principle also implies that the eigenvalue
(h2λk + 1)−1 of A(h)−1 is bounded above by the kth eigenvalue of Q(h). For
m > n/2, it follows that
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∞∑
k=1

1

(h2λk + 1)m
≤ tr

[
Q(h)m

]
. (6.75)

Now the goal is to analyze tr[Q(h)m] in the limit h→ 0. Taking P̃ (h) = B(h) in
Theorem 6.30 shows thatQ(h)m is represented by an integral qm(h; x, y) satisfying
the pointwise asymptotic

qm(h; x, x) = cm,nh
−n +O(h∞), (6.76)

for m > n/2, where the O(h∞) remainder term is smooth as a function of x. By
Theorem 4.24,

tr
[
Q(h)m

] =
∫

Ω

qm(h; x, x) dx. (6.77)

To complete the proof, the idea is to use dominated convergence to take the limit
(6.76) inside the integral in (6.77). This requires a uniform bound on qm(h; x, x).

To obtain such a bound, we will exploit the fact that the integral kernel of Q(h)
is the restriction to Ω ×Ω of the kernel of B(h)−1. Thus, applying Theorem 6.30
to B(h)−1 on Ω̃ yields the asymptotic

q1(h; x, y) = Φ1(h; |x − y|)+ !1(h; x, y), (6.78)

for x �= y, where !1(h; ·, ·) is smooth and uniformly O(h∞) on Ω × Ω .
Theorem 6.30 applies directly to qm only in the case m = 1, because PΩ does
not commute with B(h)−1. However, we can exploit (6.78) by writing qm as an
m-fold convolution of q1.

Using the fact that K−ν(z) = Kν(z), we have

Φ1(h; r) = (2π)−n/2h−n(r/h)1−n/2Kn/2−1(r/h).

By the asymptotic (6.70), and the fact that K0(t) ∼ − log t as t → 0+, we can thus
estimate, for some δ > 0 (needed only if n = 2),

|Φ1(h;ht)| ≤ Ch−nt2−n−δe−t

for all t > 0. If we set

w(z) := |z|2−n+δe−|z|, (6.79)

then from (6.78) we can estimate

|q1(h; x, y)| ≤ Ch−nw((x − y)/h), (6.80)

where C depends on n and δ, but not on x, y or h.
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Writing qm as the m-fold convolution q1 ∗ · · · ∗ q1 gives

qm(h; x, x) =
∫

Ω×···×Ω
q1(h; x, y1) . . . q1(h; ym−1, x)

m−1∏
j=1

dnyj .

If we then set yj = x + hzj and use the estimate (6.80), this yields

|qm(h; x, x)| ≤ Ch−n
∫

Rn(m−1)
w(z1)w(z1 − z2) . . . w(zm−1)

m−1∏
j=1

dnzj . (6.81)

The remaining integral can be estimated with a repeated application of Young’s
inequality (Theorem A.15),

∫

Rn(m−1)
w(z1)w(z1 − z2) . . . w(zm−1)

m−1∏
j=1

dnzj ≤ C‖w‖m
Lm/(m−1) .

From (6.79), we can see that w ∈ Lp(Rn) for p < n/(n − 2 + δ). Thus, w ∈
Lm/(m−1)(Rn) for m > n/2 and the integral in (6.81) is therefore finite. This yields
a uniform bound

|qm(h; x, x)| ≤ Ch−n,

for x ∈ Ω .
Returning to (6.77), we can multiply by hn and apply the dominated convergence

and the pointwise limit (6.76) to deduce that

lim
h→0

(
hn tr

[
Q(h)m

]) = cm,n vol(Ω).

Thus, by (6.75),

lim sup
h→0

[
hn

∞∑
k=1

1

(h2λk + 1)m

]
≤ cm,n vol(Ω), (6.82)

which is the upper bound half of the asymptotic. In combination, (6.72) and (6.82)
give

lim
h→0

[
hn

∞∑
k=1

1

(h2λk + 1)m

]
= cm,n vol(Ω),

which completes the proof. 
�
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6.5.4 The Tauberian Argument

The final step in establishing the Weyl formula is to extract asymptotics of
the sequence {λk} from the limit in Theorem 6.32, using a Tauberian theorem.
The name comes from a result proved by Alfred Tauber in 1897 that says if
limr→1−

∑∞
n=1 anr

n = A and an = o(1/n), then
∑∞

n=1 an = A. This basic
result admits a wide variety of powerful generalizations. The relevant version for
our purposes is the following:

Theorem 6.33 (Karamata’s Theorem). Let μ be a measure on [0,∞), such that
e−tx is integrable with respect to dμ(x) for each t > 0. Suppose that for α > 0,

∫ ∞

0
e−txdμ(x) ∼ At−α, (6.83)

as t → 0+ (or t →∞). Then

μ[0, s] ∼ A

�(α + 1)
sα,

as s →∞ (or s → 0+, respectively).

Proof The proofs are quite similar, so we consider only the case t → 0+. Define a
family of measures νt by

dνt (x) = tαe−xdμ(x/t)

For c ≥ 0,

∫ ∞

0
e−cx dνt (x) = tα

∫ ∞

0
e−(c+1)tx dμ(x).

Thus, the hypothesis (6.83) gives

lim
t→0+

∫ ∞

0
e−cx dνt (x) = A(c + 1)−α. (6.84)

We can express the right-hand side of (6.84) in terms of a limiting measure

dν0(x) := A

�(α)
xα−1e−x dx,

which satisfies
∫ ∞

0
e−cx dν0(x) = A(c + 1)−α.
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By the asymptotic (6.84), we have

lim
t→0+

∫ ∞

0
e−cx dνt (x) =

∫ ∞

0
e−cx dν0(x), (6.85)

for all c ≥ 0.
To extend (6.85) to a broader class of functions, we introduce the algebra

A :=
{ m∑
j=1

aj e
−cj x : aj ∈ R, cj > 0

}
.

For f ∈ A, it follows immediately from (6.85) that

lim
t→0+

∫ ∞

0
f dνt =

∫ ∞

0
f dν0. (6.86)

Let C0(R+,R) denote the set of continuous real-valued functions on [0,∞) that
vanish at ∞. By the Stone–Weierstrass theorem [77, Thm. 7.32], A is dense in
C0(R+,R) with respect to the uniform topology. The measures νt are uniformly
bounded, since limt→0+ νt [0,∞) = ν0[0,∞) = A. Therefore (6.86) holds for all
f ∈ C0(R+,R).

Now for δ > 0, let

fδ(x)

⎧
⎪⎪⎨
⎪⎪⎩

1, x ∈ [0, 1],
1− (x − 1)/δ, x ∈ (1, 1+ δ),
0, x ≥ 1.

Then

∫ 1

0
ex dμt (x) ≤

∫ ∞

0
exfδ(x) dνt (x),

and taking the limit of both sides using (6.86) gives

lim sup
t→0+

∫ 1

0
exdμt ≤

∫ ∞

0
exfδ(x) dν0(x)

≤
∫ 1

0
ex dν0(x)+ Cδ.

Hence,

lim sup
t→0+

∫ 1

0
exdμt ≤

∫ 1

0
ex dν0.
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Combining this with the corresponding continuous approximation of χ[0,1] from
below yields

lim
t→0+

∫ 1

0
ex dνt (x) =

∫ 1

0
ex dν0(x) (6.87)

This is the claimed result, since

μ[0, s] = sα
∫ 1

0
ex dν1/s(x),

and

∫ 1

0
ex dν0(x) = A

�(α + 1)
.


�
With Karamata’s Tauberian theorem, we now have all the ingredients for the

proof of the Weyl asymptotic.

Proof of Theorem 6.27 For m > n/2, let

g(t) :=
∞∑
k=1

1

(λk + t)m .

We can write this in terms of the counting function NΩ(t) as a Stieljes integral,

g(t) =
∫ ∞

0

1

(x + t)m dNΩ(x). (6.88)

Setting h = t−1/2 in Theorem 6.32 gives the asymptotic

g(t) ∼ A
�(m− n

2 )

�(m)
t−m+

n
2 (6.89)

as t →∞, where

A := (4π)−
n
2 vol(Ω).

For the integrand in (6.88), we can set

1

(x + t)m =
1

�(m)

∫ ∞

0
ym−1e−(t+x)y dy.
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After switching the order of integration using Fubini’s theorem, this gives

g(t) = 1

�(m)

∫ ∞

0
ym−1e−tyf (y) dy, (6.90)

where

f (y) :=
∫ ∞

0
e−yxdNΩ(x).

Theorem 6.33 (Karamata) now applies to the integral (6.90). From the asymptotic
(6.89) we deduce that

∫ s

0
ym−1f (y) dy ∼ A

(m− n
2 )
sm−

n
2 , (6.91)

as s → 0+.
To proceed, we would like to differentiate (6.91) with respect to s. Although

differentiation of asymptotic limits is not generally possible, we have an advantage
here in the fact that f (y) is monotonically decreasing. For h ∈ (0, s) this gives

∫ s

s−h
ym−1f (y) dy ≥ h(s − h)m−1f (s),

or

f (s) ≤ 1

h(s − h)m−1

∫ s

s−h
ym−1f (y) dy. (6.92)

For convenience, set ν := m− n/2, so that the right-hand side of (6.91) is aν−1sν .
For ε > 0 and u ≤ cε,

∣∣∣∣u−ν
∫ u

0
ym−1f (y) dy − aν−1

∣∣∣∣ < ε.

Applying this to the integral in (6.92) yields

f (s) ≤ Aν−1[sν − (s − h)ν] + 2εsν

h(s − h)m−1 .

for 0 < h < s ≤ cε. Setting h = √εs then gives

f (s)

sν−m
≤ Aν−1[1− (1−√ε)ν] + 2ε√

ε(1−√ε)m−1
.
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As s → 0 we can also take ε→ 0, so that

lim sup
s→0+

f (s)

sν−m
≤ lim

ε→0+
Aν−1[1− (1−√ε)ν] + 2ε√

ε(1−√ε)m−1

= A.

As similar argument based on the integral from s to s + h shows that

lim inf
s→0+

f (s)

sν−m
≥ A.

Therefore, f (s) ∼ Asν−m as s → 0+, which translates to

f (s) ∼ As−
n
2 . (6.93)

Applying Karamata’s theorem to f (s) yields

NΩ(x) ∼ A

�(n2 + 1)
x
n
2 ,

as x →∞. Since

A

�(n2 + 1)
= (2π)−nωn vol(Ω),

this completes the proof. 
�

6.6 Nodal Domains

The nodes of a vibrating string are the positions on the string that remain at rest
during the vibration. For a “pure tone” solution which exhibits a single frequency,
the spatial component is an eigenfunction, and the nodes correspond to its zeros, as
illustrated in Figure 6.11. Since the kth eigenfunction is proportional to sin(πkx/�),
it has exactly k − 1 nodes. This property holds for more general one-dimensional
eigenvalue problems, by the Sturm–Liouville theory.

Let Ω ⊂ R
n be a bounded open set, with Dirichlet eigenvalues {λk} written in

increasing order as above. As noted earlier, we can assume that the eigenfunctions

Fig. 6.11 A string
eigenfunction with two nodes
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ψk are real-valued, by separating the real and imaginary parts if necessary. The
nodal domains of ψk are defined to be the connected components of the open set
{ψk �= 0} ⊂ Ω . Figure 6.12 shows a sample nodal domain plot for a triangle.

Fig. 6.12 The 128th
eigenfunction of the
equilateral triangle has 30
nodal domains

We would naturally expect the nodal pattern to become more intricate as the
frequency increases. The relationship can be quantified by estimating the maximum
possible number of domains for each eigenfunction. We first consider the case of
the eigenfunction ψ1 corresponding to the bottom of the spectrum.

Theorem 6.34. Let Ω ⊂ R
n be a bounded, connected open set. The lowest

Dirichlet eigenvalue λ1 is simple, and its eigenfunction has a single nodal domain.

Proof Let {ψk} be the orthonormal basis for L2(Ω) consisting of Dirichlet
eigenfunctions. We can split ψ1 into positive and negative components by setting

ψ±1 (x) := max{ψ1(x), 0}.

To check that these components lie in H 1
0 (Ω), let

Fε(t) :=
{
te−ε2/(t−ε)2 , t > ε,

0, t ≤ ε.

Then Fε ◦ ψ1 is smooth, by the interior regularity of ψ1 (Theorem 6.15), and has
support equal to {ψ1 ≥ ε}, which is compact. It is easy to check that Fε ◦ψ1 → ψ+1
as ε → 0, with respect to the H 1 norm, proving that ψ+1 ∈ H 1

0 (Ω). A similar
argument applies to ψ−1 .

Since the supports of ψ+1 and ψ−1 intersect in a set of measure zero, both the
functions and their derivatives are orthogonal. In particular

λ1 = ‖∇ψ1‖2 = ‖∇ψ+1 ‖2 + ‖∇ψ−1 ‖2. (6.94)
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On the other hand, we have

‖∇ψ±1 ‖2 ≥ λ1‖ψ±1 ‖2

by (6.20), and ‖ψ+1 ‖2 + ‖ψ−1 ‖2 = 1. In view of (6.94), this shows that

‖∇ψ±1 ‖2 = λ1‖ψ±1 ‖2. (6.95)

Since ψ1 is nonzero, at least one of the components ψ±1 must be nonzero. After
adjusting the sign, if needed, let us assume thatψ+1 is nonzero. If the basis expansion
of ψ+1 is denoted by

∑
ckψk , then (6.95) implies that

∞∑
k=1

λk|ck|2 = λ1

∞∑
k=1

|ck|2.

Since λk ≥ λ1, we conclude that ck = 0 unless λk = λ1. In other words, ψ+1 is a
linear combination of eigenfunctions with eigenvalue λ1. Therefore, ψ+1 is itself an
eigenfunction. Unique continuation (Corollary 6.16) then implies that ψ+1 cannot
vanish on a nonempty open set. Therefore suppψ+1 = Ω and ψ1 ≥ 0.

To prove the simplicity of the first eigenvalue, suppose that λ1 = λ2. The
argument above then applies to ψ2 also, which means that ψ2 ≥ 0 in Ω . This is
a contradiction, because ψ1 and ψ2 are orthogonal. Therefore λ2 > λ1. 
�

Following Theorem 6.34, we adopt the standard convention that ψ1 ≥ 0. This
inequality can be sharpened in the interior by noting that ψ1 ≥ 0 implies that
−�ψ1 = λ1ψ1 ≥ 0, i.e., ψ1 is superharmonic. Superharmonic functions satisfy a
strict minimum principle: a local minimum cannot occur at an interior point unless
the function is constant. (See, e.g., [13, Thm. 9.5].) Thus ψ1 > 0 on Ω .

In 1923 Richard Courant used an extension of the argument we have given
for ψ1 to prove the following bound on the number of nodal domains for higher
eigenfunctions.

Theorem 6.35 (Courant). The Dirichlet eigenfunction ψk has at most k nodal
domains.

Proof Suppose that ψk has at least k nodal domains. We label these as V1, . . . , Vk ,
and define the restrictions

ψ
(j)
k (x) :=

{
ψk(x), x ∈ Vj
0, x /∈ Vj ,

for j = 1, . . . , k. Note that each ψ(j)
k ∈ H 1

0 (Ω) by the argument used in the proof
of Theorem 6.34.
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Counting dimensions shows that there exists a nonzero element u ∈
span{ψ(1)

k , . . . , ψ
(k)
k } such that u is orthogonal to each ψi for i = 1, . . . , k− 1. The

eigenfunction basis decomposition of u thus has the form

u =
∞∑
i=k
〈ψi, u〉ψi.

This implies that

‖∇u‖2 =
∞∑
i=k

λi |〈ψi, u〉|2. (6.96)

On the other hand, since u is a linear combination of disjoint components of ψk , we
can argue as in Theorem 6.34 that

‖∇u‖2 = λk‖u‖2 = λk

∞∑
i=k
|〈ψi, u〉|2.

Comparing this to (6.96) shows that 〈ψi, u〉 = 0 unless λi = λk , implying that u is
itself eigenfunction with eigenvalue λk .

By construction, u vanishes outside V1 ∪ · · · ∪ Vk , but unique continuation
(Corollary 6.16) implies that u cannot vanish on an open set. It follows that ψk
cannot have more than k nodal domains. 
�

6.7 Isoperimetric Inequalities and Minimal Eigenvalues

In 1894 the physicist Lord Rayleigh conjectured that among all vibrating mem-
branes of a given area, the lowest fundamental tone is attained only if the membrane
is circular. In other words, among all bounded open sets Ω ⊂ R

2 of a fixed area,
the disk is the unique minimizer of λ1(Ω). From the calculation in Example 6.2, we
can see that for a disk in R

2 of radius r , the lowest eigenvalue is

λ1(D) = j2
0,1,

where j0,1 ≈ 2.4048 is the first zero of the Bessel function J0. By scaling, we can
thus state Rayleigh’s conjecture in the form

λ1(Ω) ≥
πj2

0,1

vol(Ω)
.

This result was proven independently by Georg Faber and Edgar Krahn in the 1920s.
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Theorem 6.36 (Faber–Krahn Inequality). Suppose that Ω is a bounded open
set Rn, and let B ⊂ R

n be a ball with vol(B) = vol(Ω). The lowest Dirichlet
eigenvalues satisfy,

λ1(Ω) ≥ λ1(B), (6.97)

with equality only if Ω is a ball.

We can make the inequality in Theorem 6.36 more explicit by computing the
lowest eigenvalue of the unit ball Bn ⊂ R

n. A straightforward generalization of the
calculation from Example 6.2 gives

λ1(B) = j2
n
2−1,1,

where j n
2−1,1 denotes the first zero of the Bessel function Jn

2−1. Using scaling and

the fact that vol(B) = π
n
2 /�(n2 + 1), the inequality (6.97) can be written as

λ1(Ω) ≥ vol(Ω)−
2
n

πj2
n
2−1,1

�(n2 + 1)
2
n

.

The Faber–Krahn inequality is a consequence of the classical isoperimetric
inequality. Suppose U is a bounded open subset of Rn with C1 boundary. If B is a
ball with the same volume as U , then

area(∂U) ≥ area(∂B), (6.98)

with equality only if U is a ball. Here “area” refers the (n − 1)-dimensional
hypersurface area in R

n. For the proof of (6.98), see, for example, Chavel [20,
Thm. III.2.3 & III.2.4].

The derivation of Theorem 6.36 from the isoperimetric inequality relies on
a change-of-variables formula for the decomposition of an integral in terms of
level surfaces, called the co-area formula. Although the co-area formula can be
generalized to include functions with minimal regularity, we will limit our attention
to the relatively simple smooth case, following a proof given in Chavel [19, §IV.1].

Lemma 6.37 (Co-area Formula). Suppose that Ω ⊂ R
n is a bounded open set,

and f : Ω → R a smooth function. Let I ⊂ R be a bounded interval that contains
only regular values of f . For g ∈ C(Ω),

∫

f−1(I )

g dnx =
∫

I

∫

{f=t}
g

|∇f | dSt dt, (6.99)

where dSt denotes the surface area element on {f = t}.
Proof It suffices to prove the integration formula in the neighborhood of a point a
such that f (a) = t0 ∈ I . Let σ : U ⊂ R

n−1 → R
n be a regular parametrization

of a neighborhood of a in the level surface {f = f (a)}. We can define a
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local parametrization of the level surfaces by integrating the normal vector field
∇f/|∇f |2, starting points in the patch σ(U). That is, for each y ∈ U , let Φ(y, t) be
the trajectory in R

n such that

Φ(y, t0) = σ(y), ∂tΦ(y, t) = ∇f
|∇f |2 (Φ(y, t)). (6.100)

Existence and uniqueness of solutions of (6.100) are guaranteed for |t − t0| < δ

with δ > 0 sufficiently small, by the Picard–Lindelöf theorem from ODE theory
(see Theorem 9.8). Moreover, Φ is smooth and defines a local coordinate system
for Rn in some neighborhood of a.

By the chain rule,

∂tf (Φ(y, t)) = ∇f (Φ(y, t)) · ∂tΦ(y, t)
= 1.

Since f (Φ(y, t0)) = t0, this shows that

f (Φ(y, t)) = t,

for all |t − t0| < δ.
By the standard Jacobian formula, the volume form on R

n translates to the
coordinates (y, t) as

dnx =
∣∣∣∣det

[
∂Φ

∂y1
, . . . ,

∂Φ

∂yn−1
,
∂Φ

∂t

]∣∣∣∣ dn−1y dt. (6.101)

On the other hand, under the parametrization y �→ Φ(y, t), the surface area element
on {f = t} is given by

dSt =
∣∣∣∣det

[
∂Φ

∂y1
, . . . ,

∂Φ

∂yn−1
, ν

]∣∣∣∣ dn−1y, (6.102)

where ν denotes the unit normal. Since ν = ∇f/|∇f |, we have (6.100), and we have

ν = |∇f | ∂Φ
∂t
.

A comparison of (6.101) and (6.102) shows that

dnx = 1

|∇f |dSt dt,

within the coordinate patch covered by Φ. This local argument applies wherever f
is regular. 
�

With the co-area formula, and assuming the isoperimetric inequality, we are now
prepared to prove the Faber–Krahn inequality.
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Proof of Theorem 6.36 Let φ1 be an eigenfunction of Ω with eigenvalue λ1. The
strategy for the proof is to compare the Rayleigh quotients of φ1 with those of a
radial function ψ called the symmetric decreasing rearrangement of φ1.

By Theorem 6.15, φ1 is an analytic function, and by Theorem 6.34 we can
assume that φ1 ≥ 0 within Ω . Let T = maxΩ φ1, and define R ⊂ [0, T ] to be the
set of regular values of φ1. By Sard’s theorem, the set of critical values [0, T ]\R
has measure zero.

Consider the decreasing function V on [0, T ] defined by

V (t) := vol{x ∈ Ω : φ1(x) > t}.
By the inverse function theorem and the smoothness of φ1, V (t) is smooth for all t ∈
R. The analyticity of φ1 implies that critical points are contained in submanifolds
of lower dimension. In particular, the set of critical points of φ1 has measure zero,
and hence V is continuous on [0, T ].

For each t ∈ [0, 1], let r(t) be the radius of a ball with volume equal to V (t), i.e.,

r(t) :=
(
V (t)

vol(B)

)1/n

.

By the properties of V (t), r(t) is decreasing and continuous on [0, T ], and smooth
on R. Thus r(t) admits an inverse function ψ : [0, r0] → [0, T ]. We can interpret
ψ(r) as a radial function defined on the ball B(0, r0). By construction we have that

vol{ψ > t} = V (t). (6.103)

This is the defining condition for the symmetric decreasing rearrangement.
The next step in the proof is to check that symmetric rearrangement preserves

the L2 norm. First, note that since [0, T ]\R has measure zero, the co-area formula
(6.99) implies that

V (t) =
∫ T

t

∫

{φ1=t}
dS

|∇φ1| dt.

Therefore,

V ′(t) = −
∫

{φ1=t}
dS

|∇φ1| . (6.104)

We can thus compute that

‖φ1‖2 =
∫

Ω

φ2
1 d

nx

=
∫ T

0

∫

{φ1=t}
t2

dS

|∇φ1| dt

= −
∫ T

0
t2V ′(t) dt.
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Since this equation involves only V (t), we deduce from (6.103) that

‖ψ‖2 = ‖φ1‖2. (6.105)

The next step is to compare ‖∇φ1‖ with ‖∇ψ‖. By the co-area formula,

‖∇φ1‖2 =
∫ T

0

∫

{φ1=t}
|∇φ1| dS dt, (6.106)

with a similar expression for ‖∇ψ‖2.
For t ∈ R, the inner integral can be estimated in terms of the area of the level set

by an application of the Cauchy–Schwarz inequality,

area({φ1 = t})2 =
(∫

{φ1=t}
dS

)2

≤
(∫

{φ1=t}
|∇φ1| dS

)(∫

{φ1=t}
dS

|∇φ1|
)
,

In view of (6.104), this gives the estimate

∫

{φ1=t}
|∇φ1| dS ≥ (area{φ1 = t})2

−V ′(t) . (6.107)

Since vol({φ1 > t}) = vol({ψ > t}), by construction, and {ψ1 = 0} is smooth for
t ∈ R, the isoperimetric inequality (6.98) implies that

area{φ1 = t} ≥ area{ψ = t}, (6.108)

with equality only if {φ1 = t} is a sphere. Note also that, since ψ is radial,

area({ψ = t})2 =
(∫

{ψ=t}
|∇ψ | dS

)(∫

{ψ=t}
dS

|∇ψ |
)

= −V ′(t)
(∫

{ψ=t}
|∇ψ | dS

)
.

Thus, by (6.107) and (6.108),

∫

{φ1=t}
|∇φ1| dS ≥

∫

{ψ=t}
|∇ψ | dS (6.109)

for t ∈ R, with equality only if {φ1 = t} is a sphere.
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Applying (6.109) to (6.106) now shows that

‖∇φ1‖2 ≥ ‖∇ψ‖2, (6.110)

with equality only if {φ1 = t} is spherical for all t ∈ R. Equality thus occurs only if
φ1 is radial, implying that Ω is a ball. 
�

A unique symmetric decreasing rearrangement can be constructed for any
measurable function R

n → R. The bound (6.110), which is the essential point
in our proof of Faber–Krahn, is called the Pólya–Szegő inequality [68]. It can be
proven directly, without relying on an isoperimetric inequality; see, e.g., Lieb and
Loss [59, §7.17].

The Faber–Krahn inequality is part of a family of isoperimetric results for
eigenvalues in different contexts. For example, the Szegő–Weinberger inequality
[88, 95] gives an analog of Faber–Krahn for Neumann eigenvalues. Let Ω ⊂ R

n be
a bounded open set with smooth boundary ∂Ω . If B is a ball with the same volume
as Ω , then

μ2(Ω) ≤ μ2(B),

with equality only is Ω is a ball.
Another famous result, originally conjectured by Payne, Pólya, and Weinberger

[65], was proven in 1990 by Ashbaugh and Benguria [5]. This says that the ratio
of the first two Dirichlet eigenvalues, λ2/λ1, is minimized for the sphere. In
particular, to determine whether a drum is circular, it is enough to hear the first
two eigenfrequencies.

6.8 Exercises

6.1. On L2(0, 1), let A be the self-adjoint extension of the Laplacian −∂2 with the
Robin boundary conditions,

f ′(0) = αf (0), f ′(1) = −αf (1),

for a constant α ∈ R, defined as in Example 3.32.

(a) Show that A is positive for α ≥ 0 and semi-bounded, as defined in (3.25),
for α < 0. [Hint: To estimate |f (0)|2 and |f (1)|2 in terms of ‖f ‖ and ‖f ′‖,
integrate the derivative of (2t − 1)|f (t)|2.]

(b) Prove that A has discrete spectrum.
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(c) Let λ1 ≤ λ2 ≤ . . . be the eigenvalues of A. Prove that

λk = min
W∈Λk

{
max

u∈W,‖u‖=1
Qα[u]

}
,

where Λk denotes the set of k-dimensional subspaces of H 1(0, 1) and

Qα[u] := ‖u′‖2 + α
(
|u(0)|2 + |u(1)|2

)

(d) For α ≥ 0, use the min–max principle to prove that

π2(k − 1)2 ≤ λk ≤ π2k2.

6.2. Suppose that Ω ⊂ R
n is a bounded open set, and that {Ωj } is a sequence of

open sets such that

Ω1 ⊂ Ω2 ⊂ . . . ,

withΩ = ∪Ωj . Let λk(Ωj ) denote the kth Dirichlet eigenvalue ofΩj , and similarly
for Ω . Use the min–max principle to show that, for each k,

lim
j→∞ λk(Ωj ) = λk(Ω).

6.3. Let λ1 be the lowest Dirichlet eigenvalue of a bounded open set Ω ⊂ R
n.

For a finite-dimensional subspace A ⊂ H 1
0 (Ω), define β1 to be the Rayleigh–Ritz

approximation to λ1 defined by (6.46). Suppose that the orthogonal projection Q
onto A⊥ is bounded as an operator on H 1

0 (Ω). Estimate β1 − λ1 in terms of the
operator norms of Q acting on L2(Ω) and H 1

0 (Ω).

6.4. On an open set Ω ⊂ R
n, let L be the differential operator,

Lu := −
n∑

i,j=1

∂i
[
aij (x) ∂ju

]
, (6.111)

where the coefficients aij ∈ C∞(Ω;R) satisfy aij = aji for all i, j . Assume that L
is uniformly elliptic on Ω , which means that there exists c > 0 such that

n∑
i,j=1

aij (x)ξiξj ≥ c|ξ |2, (6.112)

for all x ∈ Ω and ξ ∈ R
n.
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(a) To define the Dirichlet self-adjoint extension of L to L2(Ω), set

D(L) := {u ∈ H 1
0 (Ω) : Lu ∈ L2(Ω)

}
,

where Lu is defined in the weak sense. Prove that L is a positive self-adjoint
operator on this domain.

(b) If Ω is bounded, prove that L has discrete spectrum with strictly positive
eigenvalues.

6.5. Prove Carleman’s local version of the Weyl asymptotic: The Dirichlet eigen-
functions {ψk} of a bounded open set Ω ⊂ R

n satisfy

lim
m→∞

1

m

m∑
k=1

ψk(x)ψk(y) =

⎧
⎪⎨
⎪⎩

1

vol(Ω)
, x = y,

0, x �= y.

6.6. The wave equation for vibrations of a metal plate involves the biharmonic
operator (or “bi-Laplacian”) �2. For a bounded open set Ω ⊂ R

n, let A denote
the Friedrichs extension of �2 acting on C∞0 (Ω). Prove that A has purely discrete
spectrum by showing that D(A) ⊂ H 1

0 (Ω). [Hint: You can estimate the H 1 norm in
terms of the quadratic formQ[u] := ‖�u‖2 by exploiting the positivity of (�−1)2.]

6.7. On the interval [0, 1], define the differential operator

Lu := −(ρu′)′,

where ρ ∈ C∞[0, 1] is strictly positive. Define the Dirichlet realization of L
on L2[0, 1] as in Exercise 6.4. Let {λk} be the eigenvalues of L, in ascending
order, with {φk} the corresponding real-valued eigenfunctions. You may assume
that the eigenfunctions are contained in C∞[0, 1], which is a consequence of elliptic
regularity.

(a) Prove that the eigenvalues satisfy strict inequalities,

0 < λ1 < λ2 < . . . .

(b) For each eigenfunction φ, consider t �→ (ρφ′, φ) as a parametrized curve in
R

2. We can assume that φ′(0) > 0, so that the curve starts on the positive real
axis. Let η denote the polar-coordinate angle of (ρφ′, φ), traced continuously
starting from η(0) = 0. Show that η is a smooth, strictly increasing function on
[0, 1].

(c) Let ηk denote the angle function associated with the eigenfunction φk , defined
as in (b). Show that ηk+1(t) > ηk(t) for all t > 0.

(d) Use (c) to prove that φk has exactly k nodal domains.
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Notes

For more background on the Friedrichs extension method used in Section 6.1, see
Davies [24, §4.4], Reed and Simon [70, §X.3], or Schmüdgen [80, Chapter 10].
The most general versions of the Sobolev space results discussed in Section 6.2 are
developed in Gilbarg and Trudinger [36, Chapter 7].

Weyl’s law has been adapted to many other settings and sharpened in various
ways. For more on this extensive history, see the survey articles by Arendt et al. [1]
or Ivrii [46]

The Faber–Krahn inequality is covered in detail in [20]. For background on
related inequalities, see the survey article by Ashbaugh [4].



Chapter 7
Schrödinger Operators

In quantum mechanics, the motion of a single particle in R
n is described by a

normalized state function ψ ∈ L2(Rn), such that |ψ |2 is the probability density
for the particle’s location. Observable quantities such as energy and momentum
are represented by (unbounded) self-adjoint operators on L2(Rn). For example, the
classical coordinate xj is represented by the multiplication operator Mxj , and the
momentum component pj by the differential −ih̄∂xj , where h̄ is Planck’s constant.
The possible values of an observable are given by the spectrum of the associated
operator, and the distribution of these values for a particular quantum state ψ

corresponds to its spectral decomposition.
For a classical particle of mass m the kinetic energy is p2/2m. If the potential

energy is represented by a real-valued function V (x), the classical total energy
(called the Hamiltonian function) is

E := p2

2m
+ V (x).

The quantum version of the Hamiltonian, according to the prescription described
above, is the operator

H := − h̄2

2m
�+ V (7.1)

(with the potential acting by multiplication).
An operator of the form (7.1) is called a Schrödinger operator. In 1926, Erwin

Schrödinger applied the quantization scheme described above to the case of the
electron in a hydrogen atom, where V (x) is the Coulomb potential for the electric
field generated by a single proton, assumed to be fixed at the origin. In Gaussian
units this potential is given by
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V (x) := −q
2

r
, (7.2)

where q is the elementary charge, and r := |x|. Schrödinger showed that
the spectrum of the associated Hamiltonian has discrete spectrum below zero.
Moreover, the eigenvalues correspond precisely to the energy levels that Niels Bohr
had postulated for atomic hydrogen in 1913 to explain absorption and emission
lines of hydrogen gas observed in the nineteenth century. This derivation of the
empirical result from the spectrum of H was a major achievement for the new
quantum mechanical theory.

For mathematical purposes, we usually scale out the physical constants and write
a Schrödinger operator as

H = −�+ V.

In this chapter we will develop the spectral theory of Schrödinger operators for
various classes of real-valued potentials on R

n. Although the case n = 3 is of
special importance, there are physical situations, usually involving crystal lattices,
where particle motion is limited to one or two dimensions. Moreover, systems
with multiple interacting particles are described by Schrödinger operators on higher
dimensional spaces.

If we assume that the potential V is real-valued and locally L2, then H is well
defined as a symmetric operator on C∞0 (Rn). As we have seen in Examples 3.23
and 3.26, the Laplacian itself is essentially self-adjoint on C∞0 (Rn), with the
domain of the self-adjoint extension given by H 2(Rn). Thus, under the additional
assumption that V is bounded, Lemma 3.27 implies thatH is essentially self-adjoint
on C∞0 (Rn) and self-adjoint on H 2(Rn).

These assumptions on the potential are too restrictive for many problems in
quantum mechanics. The Coulomb potential (7.2), for example, is singular and
unbounded. Establishing self-adjoint extensions for a broad class of potentials
that includes the important physical cases is a fundamental goal in the theory of
Schrödinger operators. If we can show that a quantum Hamiltonian operator is
essentially self-adjoint on C∞0 (Rn), then its spectrum is canonically defined and
not dependent on other choices.

7.1 Positive Potentials

Because the Laplacian is a positive operator, it is possible to establish the essential
self-adjointness of −� + V under fairly general conditions when V ≥ 0. In
fact, since shifting V by a constant does not affect the extension properties, the
results that we develop for the positive case extend immediately to potentials which
are semi-bounded, meaning pointwise bounded from below. This shift is a trivial
adjustment, so in this section we will restrict our attention to the case V ≥ 0 for
convenience.
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7.1.1 Essential Self-adjointness

By the criteria given in Theorem 3.30 and Exercise 3.11, the essential self-
adjointness of −� + V on C∞0 (Rn) can be proven for V ≥ 0 by establishing that
(−� + V )∗ + 1 is injective. As we will see below, this amounts to ruling out any
possible weak L2 solutions of

(−�+ V + 1)u = 0. (7.3)

We first consider the relatively straightforward case where V is locally bounded.

Theorem 7.1. Suppose that V ∈ L∞loc(R
n) is real-valued with V ≥ 0. Then−�+V

is essentially self-adjoint on C∞0 (Rn).

Proof Let A = −� + V with the domain D(A) = C∞0 (Rn), and consider u ∈
D(A∗). In order to apply results from vector calculus, we want to show that u is at
least locally H 2.

For ψ ∈ C∞0 (Rn), it is easy to see from the definition of the adjoint domain that
ψu ∈ D(A∗) also. This means that (−� + V )ψu ∈ L2(Rn), with the derivative
defined in the weak sense. Since Vψu ∈ L2 by the assumption that V is locally
bounded, we conclude that −�(ψu) ∈ L2(Rn). Taking the Fourier transform
implies that |ξ |2ψ̂u ∈ L2(Rn), which gives ψu ∈ H 2(Rn) by (2.26). Since ψ
was arbitrary, this argument shows that

D(A∗) ⊂ H 2
loc(R

n).

Our main goal is to show that A∗ + 1 is injective. For u ∈ D(A∗) assume for the
sake of contradiction that

(A∗ + 1)u = 0. (7.4)

This is equivalent to the statement that

〈u, (−�+ V + 1)φ〉 = 0 (7.5)

for all φ ∈ C∞0 (Rn). In other words, u is a weak solution of (7.3). The left-hand
side of (7.5) is continuous as a function of φ with respect to the H 2 topology.
Therefore, since u ∈ H 2

loc(R
n), for χ ∈ C∞0 (Rn) we can use approximation of

χ2u by functions in C∞0 (Rn) to show that

〈
u, (−�+ V + 1)χ2u

〉 = 0.

Since V ≥ 0, this implies

‖χu‖2 ≤ 〈u,�(χ2u)
〉
. (7.6)
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We can deduce from Green’s formula that
〈
u,�(χ2u)

〉 = ‖u∇χ‖2 − ‖∇(χu)‖2

≤ ‖u∇χ‖2.

By (7.6) we thus have

‖χu‖2 ≤ ‖u∇χ‖2. (7.7)

Now assume that χ(x) has the form h(|x| − R), where h(t) = 1 for t ≤ 1 and
h(t) = 0 for t ≥ 2. Letting R→∞ in (7.7) shows that u = 0.

We conclude thatA∗+1 is injective. This proves thatA is essentially self-adjoint,
by the variant of Theorem 3.30 given in Exercise 3.11. 
�

It is possible to improve the result of Theorem 7.1 by weakening the hypothesis
to V ∈ L2

loc(Ω). In this case, the argument that (−�+V )∗ + 1 is injective relies on
a distribution theory result known as Kato’s inequality. For details, see, e.g., Hislop
and Segal [44, Ch. 8].

7.1.2 Quadratic Form Extension

Another approach to the problem of self-adjoint extension of −� + V is the
Friedrichs extension method discussed in Section 3.4.3. Defining extensions in
terms of quadratic forms has the great advantage that the form domains are generally
simpler than the domains of the corresponding operators.

The Friedrichs method provides a useful complement to the direct arguments
used in the previous section. Although Theorem 7.1 gives no information on the
exact operator domain, it does establish the crucial property of essential self-
adjointness. The Friedrichs method applies more generally and yields a description
of the operator domain, but it leaves essential self-adjointness as a separate issue.

Theorem 7.2. Suppose V ∈ L1
loc(R

n) is real-valued with V ≥ 0. Then

HQ :=
{
f ∈ H 1(Rn) : V 1

2 f ∈ L2(Rn)
}

(7.8)

is a Hilbert space with respect to the inner product

Q[f, g] := 〈f, g〉H 1 + 〈f, Vg〉.

There exists a self-adjoint extension of −�+ V , with domain

D(−�+ V ) := {u ∈ HQ : f �→ Q[u, f ] extends to L2(Rn)

as a bounded functional
}
,

(7.9)
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such that

Q[f, g] = 〈f, (−�+ V + 1)g
〉

for all f, g ∈ D(−�+ V ).
Proof Because V ≥ 0, it is clear that Q[·, ·] defines an inner product. To prove
completeness, suppose that {un} ⊂ D(−�+ V ) is a Cauchy sequence with respect
to the norm ‖·‖Q associated with Q. Because

‖u‖H 1 ≤ ‖u‖Q,

{un} is Cauchy and thus converges to some u ∈ H 1(Rn).
Since

∥∥(V + 1)
1
2 f
∥∥ ≤ ‖f ‖Q,

{(V+1)
1
2 un} is also Cauchy with respect toL2. Hence there exists some h ∈ L2(Rn)

such that

(V + 1)
1
2 un → h (7.10)

in the L2 sense. This implies that un → (V + 1)− 1
2 h in L2(Rn) as well, which

implies that u = (V + 1)− 1
2 h. Since h is L2, we have u ∈ HQ, and the combination

of H 1 convergence and (7.10) imply that un → u with respect to ‖·‖Q. Therefore
HQ is complete.

For u ∈ D(−�+ V ), the Riesz lemma defines a unique w ∈ L2(Rn) such that

Q[u, f ] = 〈w, f 〉

for all f ∈ HQ. We then define

(−�+ V )u := w − u.
The proof of self-adjointness now follows the same argument used in Theorem 6.6,
i.e., we use the Riesz lemma on HQ to establish the surjectivity of −�+ V , which
then implies that D((−�+ V )∗) ⊂ D(−�+ V ). 
�

The space HQ defined in (7.8) is called the form domain of −� + V . Note
that although C∞0 (Rn) is clearly contained in HQ, it is possible that the domain of
−�+ V given by (7.9) does not include C∞0 (Rn). This is because Vψ need not be
contained in L2(Rn) for V ∈ L1

loc and ψ ∈ C∞0 (Rn).
Theorem 7.2 illustrates the primary advantage of the Friedrichs method, namely

the ease of working with quadratic form domains. As a subspace of L2(Rn),

HQ = H 1(Rn) ∩D(MV 1/2).
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In other words, the quadratic form domain of −�+ V is just the intersection of the
form domains of −� and MV . On the operator side, the domain D(−� + V ) has
no direct connection to D(−�) = H 2(Rn) and may in fact be disjoint from it.

When V ∈ L∞loc(R
n) (still assuming V ≥ 0), it is easy to see from (7.9) that

C∞0 (Rn) ⊂ D(−� + V ). Since essential self-adjointness implies uniqueness of
the extension, the two methods produce the same result when V satisfies both
hypotheses.

7.1.3 Discrete Spectrum

The evolution of states in quantum mechanics is described by the Schrödinger’s
equation for a quantum state Ψ ,

i
∂

∂t
Ψ = HΨ, (7.11)

where H = −�+ V is the quantum Hamiltonian. Eigenfunctions of H correspond
to steady-state solutions of the Schrödinger equation. Intuitively, we expect such
stable solutions to occur only at energies for which the corresponding classical
particle is trapped, meaning that its motion is confined to a compact region.
Trapping occurs at energies E for which the set {V (x) ≤ E} is bounded.

In the case that V → ∞ at infinity, classical particles are trapped at all
energies. We would therefore expect the Schrödinger operator to have purely
discrete spectrum under this condition.

Theorem 7.3. Suppose V ∈ L1
loc(R

n) with V ≥ 0, and let −� + V be the self-
adjoint operator as in Theorem 7.2. If V (x) → ∞ as x → ∞, then −� + V has
compact resolvent and purely discrete spectrum.

Proof Define the Hilbert space HQ with quadratic form Q[·, ·] as in the proof of
Theorem 7.2, and let A = −�+ V be the self-adjoint operator defined so that

Q[u, v] = 〈u, (A+ 1)v〉

for u ∈ D(A) and v ∈ HQ. If we set u = v = (A+ 1)−1f for f ∈ L2, then

‖u‖2
Q =

〈
(A+ 1)−1f, f

〉
. (7.12)

Suppose {fk} is a bounded sequence in L2(Rn). Our goal is to prove that the
sequence uk := (A + 1)−1fk has a subsequence converging in L2(Rn), which will
establish that (A+ 1)−1 is a compact operator.

By (7.12), the sequence uk is bounded in HQ. For m ∈ N, let χm ∈ C∞0 (Rn) be
a cutoff defined so that
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χm(x) =
{

1, |x| ≤ m,

0, |x| ≥ m+ 1.

For eachm, the sequence {χmuk}∞k=1 is bounded inH 1
0 (B(0;R+1)), since ‖·‖H 1 ≤

‖·‖Q.
Applying Rellich’s theorem (Theorem 6.9) to {χ1uk} yields a subsequence

{u1,j } ⊂ {uk} for which {χ1u1,j } converges in L2(Rn). We can then apply Rellich’s
theorem to {χ2u1,j } to produce a subsequence u2,j such that {χ2u2,j } converges,
and so on. The result is a nested set of subsequences {ul+1,j } ⊂ {ul,j } such that
{χlul,j } converges in L2(Rn) as j →∞. We then set wj := uj,j . By construction,
for each m the cutoff sequence {χmwj } converges in L2(Rn) as j →∞.

Since the sequence {uk} was bounded in HQ, we also have a uniform bound
‖wj‖Q ≤ M for all j . This implies in particular that

∥∥V 1
2wj

∥∥ ≤ M. (7.13)

Given ε > 0, the hypothesis on V allows us to choose m sufficiently large that

inf|x|≥mV (x) ≥
1

ε
.

By (7.13) this implies

‖(1− χm)wj‖2 ≤ εM2, (7.14)

for all j .
Since χmwj is convergent in L2, there exists N > 0 such that i, j ≥ N implies

‖χm(wi − wj)‖ ≤ ε.

Combining this with (7.14) gives

‖wi − wj‖ ≤ ‖χm(wi − wj)‖ + ‖(1− χm)wi‖ + ‖(1− χm)wj‖
≤ ε + 2M

√
ε,

for i, j ≥ N . Since ε was arbitrary, this demonstrates that {wj } is Cauchy and
therefore convergent in L2(Rn).

The operator (A + 1)−1 is thus compact, and the discreteness of the spectrum
follows from Theorem 4.21. 
�
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7.1.4 Quantum Harmonic Oscillator

The classical harmonic oscillator describes the motion of a particle subject to a
restoring force proportional to its displacement from the origin. The corresponding
potential energy function is quadratic. The quantum mechanical analog of this
system (with Planck’s constant scaled out) is a Schrödinger operator−�+V , acting
on L2(Rn), with potential given by

V (x) =
n∑

i,j=1

xiMij xj , (7.15)

where M is a positive definite matrix. The operator −� + V is essentially
self-adjoint on C∞0 (R) by Theorem 7.1 and has purely discrete spectrum by
Theorem 7.3.

Theorem 7.4. The spectrum of the quantum harmonic oscillator with potential
(7.15) is given by

σ(−�+ V ) =
{ n∑
i=1

(2ki + 1)ωi : ki ∈ N0

}
,

where ω2
1, . . . , ω

2
n denote the eigenvalues of M with ωj > 0.

By using a linear change of variables to diagonalize M , we can assume that

V (x) =
n∑
j=1

ω2
j x

2
j .

Separation of variables then allows us to reduce the eigenvalue equation to a sum
of one-dimensional equations. It also suffices to consider the case ωj = 1, since
the coefficient can be accounted for by rescaling the variable. Thus we focus on the
one-dimensional operator

H := −�+ x2,

defined as a self-adjoint operator on L2(R) by the unique extension described in
Theorem 7.1.

To determine the eigenvalues ofH , it is convenient to introduce a pair of auxiliary
operators,

A± := −i∂x ± ix.

As differential operators, we have the relations

A+A− = H − 1, A−A+ = H + 1. (7.16)
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The operators A+ and A− are called raising and lowering operators, respectively.
This terminology is justified by the following:

Lemma 7.5. Let ψ be an eigenfunction of H with eigenvalue λ. Then ψ is smooth,
A±ψ ∈ D(H) and

H(A±ψ) = (λ± 2)A±ψ.

Proof First we show that ψ is smooth, by an elliptic regularity argument. For f ∈
L2(R), we claim that

−�f ∈ Hm(R) implies f ∈ Hm+2(R). (7.17)

This is an immediate consequence of the characterization of Sobolev spaces (2.26)
and the fact that the Fourier transform conjugates −� to multiplication by |ξ |2.

As noted in the proof of Theorem 7.1, D(H) ⊂ H 2
loc(R), so this is our starting

assumption for ψ . Suppose, for the sake of induction, that ψ ∈ Hm
loc(R)withm ≥ 2.

For χ ∈ C∞0 (Rn), we then have

−�(χψ) = (λ− x2)χψ − [�,χ ]ψ.

Since [�,χ ] is a first-order differential operator, with smooth coefficients, the right-
hand side is contained in Hm−1(R) by the inductive hypothesis. Therefore χψ ∈
Hm+1(R), by (7.17). By induction, this shows that ψ ∈ Hm

loc(R) for all m ∈ N,
which proves that ψ ∈ C∞(R) by Sobolev embedding (Theorem 2.26).

As differential operators, H and A± satisfy a commutator formula,

[
H,A±

] = ±2A±. (7.18)

Applying (7.18) to the eigenfunction ψ ∈ C∞(Rn) gives

H(A±ψ) = A±(H ± 2)ψ

= (λ± 2)A±ψ.
(7.19)

Note that we have only shown that this holds as a differential equation. We still need
to check that A±ψ ∈ D(H).

By the characterization of the quadratic form domain given in Theorem 7.2, it
is clear that ψ ∈ H 1(R) and xψ ∈ L2(R). Thus we have A±ψ ∈ L2(R). For
f ∈ C∞0 (R) we can integrate by parts to estimate

∣∣〈A±ψ,Hf 〉∣∣ = ∣∣〈(λ± 2)a±ψ, f
〉∣∣

≤ C‖f ‖.

This shows that A±ψ is contained in D(H). 
�
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Lemma 7.5 leads rather quickly to an explicit characterization of the spectrum in
the dimension one.

Corollary 7.6. The one-dimensional harmonic oscillator has spectrum

σ(−�+ x2) = 2N− 1,

and an orthonormal basis {ψk}∞k=0 of eigenfunctions

ψk(x) := π−
1
4 2−

k
2 (k!)− 1

2 (∂x − x)ke−x2/2, (7.20)

where λk = 2k + 1.

Proof Suppose thatHψ = λψ forψ ∈ D(H). Sinceψ is smooth, we can integrate
by parts to obtain

‖A−ψ‖2 = 〈ψ,A+A−ψ〉
= 〈ψ, (H − I )ψ〉
= (λ− 1)‖ψ‖2.

(7.21)

Iterating this result gives

∥∥(A−)kψ∥∥2 = ‖ψ‖2
k∏

j=1

(λ+ 1− 2j) (7.22)

for k ∈ N. If λ /∈ 2N− 1, then the product on the right is strictly negative for large
values of k, which is impossible for ψ �= 0. Therefore σ(−�+ x2) is contained in
the set 2N− 1.

If ψ0 satisfies the eigenvalue equation for λ0 = 1, then A−ψ0 = 0 by (7.21).
Thus ψ0 satisfies

d

dx
ψ0 = xψ0,

which has the L2-normalized solution,

ψ0(x) := π−
1
4 e−x2/2,

unique up to a multiplicative constant. The uniqueness shows that λ0 = 1 is a simple
eigenvalue.

By Lemma 7.5, (A+)kψ0 is an eigenfunction for λk := 2k + 1, and its
normalization can be calculated using (7.16),
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∥∥(A+)kψ0
∥∥2 =

k−1∏
l=0

(λl + 1)

= 2kk!

Normalizing (A+)kψ0 thus yields the eigenfunction ψk given by (7.20).
To see that the higher eigenvalues are also simple, note that if ψ is an

eigenfunction with eigenvalue λk , then (A−)kψ has eigenvalue 1. Since λ0 was
simple, this implies that (A−)kψ is a constant multiple of ψ0, and it follows that ψ
is proportional to ψk . 
�

A few eigenfunctions of H are illustrated in Figure 7.1. Each eigenfunction
consists of a polynomial factor times e−x2/2. These factors are (up to a normalization
constant) called the Hermite polynomials.

Fig. 7.1 The first five
eigenfunctions of the
one-dimensional harmonic
oscillator

–4 –2 2 4

The spectrum of−�+ω2x2 on L2(R) is derived from Corollary 7.6 by a scaling
argument. Consider the unitary transformation of L2(R) defined by

Uωf (x) := ω
1
4 f (γ

1
2 x).

Conjugating the operator H by Uω gives

Uω(−�+ x2)U−1
ω = −ω−1�+ ωx2.

So that

−�+ ω2x2 = ωUω(−�+ x2)U−1
ω .

Hence, by Corollary 7.6,

σ
(−�+ ω2x2) = (2N− 1)ω. (7.23)

Theorem 7.4 now follows from (7.23) by diagonalization and separation of vari-
ables.
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7.2 Relatively Bounded Perturbations

The methods of Section 7.1 are not applicable to potentials describing electro-
magnetic interactions between particles, because the Coulomb potential (7.2) is
not semi-bounded below. In this section we will develop a general method that
establishes self-adjointness in cases like the Coulomb potential, by regarding the
potential term as a relatively small perturbation of −�.

To make this notion precise, we say that a symmetric operator B is relatively
bounded with respect to a self-adjoint operator A if D(A) ⊂ D(B) and there exist
constants α, β ∈ R such that

‖Bu‖ ≤ α‖Au‖ + β‖u‖ (7.24)

for all u ∈ D(A). The following result was proven by Franz Rellich in 1939 [73],
and its applications to Schrödinger operators in particular were developed by Tosio
Kato [50].

Theorem 7.7 (Kato–Rellich). Let A be a self-adjoint operator on a Hilbert space
H. If B is a symmetric operator which is relatively bounded with respect to A, with
constant α < 1 in (7.24), then A + B is self-adjoint on D(A) and essentially self-
adjoint on any core for A.

Proof Our goal is to apply Theorem 3.29 by establishing the surjectivity of A +
B − iσ for σ ∈ R with |σ | large. Since A is self-adjoint, A − iσ is invertible for
σ �= 0. By the assumption that D(A) ⊂ D(B) we can thus write

A+ B − iσ = [I + B(A− iσ )−1](A− iσ ), (7.25)

and argue for surjectivity by estimating B(A− iσ )−1.
For u ∈ D(A), the assumption (7.24) gives

∥∥B(A− iσ )−1u
∥∥ ≤ α

∥∥A(A− iσ )−1u
∥∥+ β‖(A− iσ )−1u‖. (7.26)

The spectral theorem gives the estimates

∥∥A(A− iσ )−1
∥∥ ≤ 1,

∥∥(A− iσ )−1
∥∥ ≤ |σ |−1.

Hence, (7.26) implies that B(A− iσ )−1 is a bounded operator with

∥∥B(A− iσ )−1
∥∥ ≤ α + β|σ |−1.

By hypothesis α < 1, so by taking |σ | sufficiently large, we can assume that

∥∥B(A− iσ )−1
∥∥ < 1.
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This guarantees that I+B(A−iσ )−1 is invertible by Neumann series. It then follows
from (7.25) that A+B± iσ is surjective as a map D(A)→ H, provided |σ | is large
enough. Therefore, by Theorem 3.29, A+ B is self-adjoint on D(A).

Now assume that A is merely essentially self-adjoint. If u ∈ D(A), then there
exists a sequence un → u such that Aun converges to Au. By the assumption
(7.24), the sequence Bun also converges, so that u ∈ D(B) (since B is closed).
By continuity, we can extend (7.24) to

∥∥Bu∥∥ ≤ α
∥∥Au∥∥+ β‖u‖ (7.27)

for all u ∈ D(A). By the first part of the proof, this implies that A+B is self-adjoint
on the domain D(A).

Using the fact that (A + B)un → Au + Bu, we can also conclude that u ∈
D((A+ B)), with

(A+ B)u = Au+ Bu.

This means that

(A+ B) ⊂ A+ B.

Because A+ B is self-adjoint, it is closed in particular. Thus, since A+ B a closed
extension of A+ B and (A+ B) is the smallest closed extension, we have

A+ B ⊂ (A+ B).

We conclude that (A+ B) = A+B, which is self-adjoint. ThusA+B is essentially
self-adjoint. 
�

Kato’s original application of Theorem 7.7 to Schrödinger operators includes the
following result, which covers the case of the Coulomb potential in particular.

Theorem 7.8. Let n ≤ 3, and suppose V is a real-valued potential in L2(Rn) +
L∞(Rn). Then −� + V is essentially self-adjoint on C∞0 (Rn) and self-adjoint on
H 2(Rn).

Proof The L∞(Rn) component is included for the sake of applications, but makes
no difference to the proof because it contributes a bounded self-adjoint operator.
Therefore, it suffices to consider V ∈ L2(Rn).

Suppose that u ∈ H 2(Rn). By the Sobolev embedding (Theorem 2.26), this
implies that u is continuous and bounded for n < 4. This gives V u ∈ L2(Rn). Since
this is the defining condition for the domain of the multiplication operator MV , we
conclude that

H 2(Rn) ⊂ D(MV ).
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As in the proof of Sobolev embedding, we can use the fact that

‖u‖∞ ≤ (2π)−n/2‖û‖1,

together with the Cauchy–Schwarz inequality, to estimate

‖u‖2∞ ≤ C

∫

Rn

1

(|ξ |2 + b2)2
dnξ ·

∫

Rn

(|ξ |2 + b2)2|û(ξ)|2dnξ, (7.28)

for b > 0. The first integral gives

∫

Rn

1

(|ξ |2 + b2)2
dnξ = Cbn−4,

where C depends only on n, while the second is equal to ‖(−�+b2)u‖2. Therefore,
(7.28) gives the estimate

‖u‖∞ ≤ Cbn−4
∥∥(−�+ b2)u

∥∥. (7.29)

For V ∈ L2(Rn) and u ∈ H 2(Rn), we apply (7.29) to obtain

‖V u‖ ≤ ‖V ‖‖u‖∞
= Cbn−4‖V ‖

(
‖�u‖ + b2‖u‖

)
,

for all b > 0. Taking b sufficiently large gives

‖V u‖ ≤ α‖�u‖ + β‖u‖,

with α arbitrarily small. Thus −�+V satisfies the hypotheses of Theorem 7.7. 
�
Example 7.9. On R

3, consider the Hamiltonian operator for the hydrogen atom
H := −� − r−1. The potential V (x) = −r−1 lies in L2

loc(R
3) and is bounded

outside a compact set. Therefore, H is essentially self-adjoint on C∞0 (R3) and self-
adjoint on H 2(R3) by Theorem 7.8. ♦
Example 7.10. For a charged particle in a magnetic field, the quantum Hamiltonian
associated with the magnetic vector potential A : R3 → R

3 is

H = (i∇ + A)2, (7.30)

where the physical constants are omitted. An operator of this type is called a
magnetic Schrödinger operator.

For f, g ∈ C∞0 (R3), we have

〈f,Hg〉 = 〈(i∇ + A)f, (i∇ + A)g〉,
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which shows that H is symmetric as an operator on C∞0 (R3). Expanding the square
gives

H = −�+ 2iA · ∇ + (∇ · A)+ A2.

The scalar terms (∇ ·A) and A2 are bounded, provided we assume that A and ∇ ·A
lie in L∞(R3), (where the divergence is defined in the weak sense). However, the
gradient term 2iA · ∇ is an unbounded operator.

To apply Theorem 7.7, note that for f ∈ H 2(R3),

‖∇f ‖2 = ‖ξ f̂ ‖2

=
∫

Rn

|ξ |2| ˆf (ξ)|2 dnξ

≤ 1

2

∫

Rn

(1+ |ξ |4)| ˆf (ξ)|2 dnξ

= 1

2

(
‖f ‖2 + ‖�f ‖2

)
.

For A ∈ L∞(R3), it follows that 2iA · ∇ is relatively bounded with respect to −�.
Therefore, H is self-adjoint on H 2(R3) and essentially self-adjoint on C∞0 (R3). ♦

7.3 Relatively Compact Perturbations

In this section we take up the question of locating the essential spectrum of−�+V .
Unfortunately, Weyl’s stability result (Theorem 5.14), which says the essential
spectrum is unaffected by compact perturbations, is not helpful for Schrödinger
operators. The multiplication operator MV is not compact on L2(Rn) unless V
vanishes almost everywhere.

Our first goal is therefore to strengthen the Weyl stability result. Instead of
requiring the difference in operators to be compact, we can impose this condition
on the difference of resolvents.

Theorem 7.11. Suppose A and B are self-adjoint operators on a Hilbert space H.
If there exists z ∈ ρ(A) ∩ ρ(B) such that (A− z)−1 − (B − z)−1 is compact, then
σess(A) = σess(B).

Proof Suppose that λ ∈ σess(A). By Theorem 5.13, there exists a sequence {uk} ⊂
D(A) with ‖uk‖ = 1 and uk → 0 in the weak sense, such that

lim
k→∞(A− λ)uk = 0. (7.31)
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By the definition of the resolvent,

(A− z)−1(A− λ) = I − (z− λ)(A− z)−1,

so (7.31) implies that

lim
k→∞

∥∥uk − (z− λ)(A− z)−1uk
∥∥ = 0. (7.32)

The assumption that (A− z)−1 − (B − z)−1 is compact implies that

lim
k→∞

[
(A− z)−1 − (B − z)−1

]
uk = 0,

by Theorem 3.38. Therefore, we can deduce from (7.32) that

lim
k→∞

∥∥uk − (z− λ)(B − z)−1uk
∥∥ = 0. (7.33)

If we now set

wk := (B − z)−1uk,

then (7.33) translates to

lim
k→∞‖(B − λ)wk‖ = 0. (7.34)

By writing (7.33) in the form

lim
k→∞‖uk − (z− λ)wk‖,

and using the fact that ‖uk‖ = 1, we can also deduce that

lim
k→∞‖wk‖ = |z− λ|

−1, (7.35)

by (7.33).
Suppose that λ �= σess(B). If Π denotes the spectral resolution of B, then this

means thatΠ(λ−ε,λ+ε) has finite rank for some ε > 0. In particular,Π(λ−ε,λ+ε)(B−
z)−1 will be compact, so that

lim
k→∞Π(λ−ε,λ+ε)wk = 0. (7.36)

With Qε := I −Π(λ−ε,λ+ε), we can estimate
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‖(B − λ)wk‖ =
∥∥(B − λ)(Π(λ−ε,λ+ε)wk +Qεwk)

∥∥
≥ ‖(B − λ)Qεwk‖ −

∥∥(B − λ)Π(λ−ε,λ+ε)wk
∥∥

≥ ε‖Qεwk‖ − ε
∥∥Π(λ−ε,λ+ε)wk

∥∥.

Taking k→∞, using (7.36) and (7.35), gives

lim inf
k→∞ ‖(B − λ)wk‖ ≥ ε|z− λ|.

This contradicts (7.34), so we conclude that λ ∈ σess(B).
We have shown that σess(A) ⊂ σess(B), and the same argument applies with A

and B switched. 
�
In many applications of Theorem 7.11, including Schrödinger operators, only

one of the resolvents is explicitly known. It is thus helpful to invoke the second
resolvent identity (Exercise 4.1), which says that

(B − z)−1 − (A− z)−1 = (B − z)−1(B − A)(A− z)−1. (7.37)

To satisfy the hypothesis of Theorem 7.11, we can see from (7.37) that it is sufficient
to verify the compactness of (B − A)(A− z)−1.

With this in mind, we say that an operator T is relatively compact with respect
to A if D(A) ⊂ D(T ) and T (A − z)−1 is compact for some z ∈ ρ(A). By the first
resolvent identity (Corollary 4.12), if T (A − z)−1 is compact for one value of z,
then it is compact for all z ∈ ρ(A).
Theorem 7.12 (Improved Weyl Stability). If A and T are self-adjoint operators
and T is relatively compact with respect to A, then A + T is self-adjoint on D(A)
and

σess(A+ T ) = σess(A).

Proof First consider the self-adjointness of A + T . Our plan is to show that
‖T (A+ iσ )−1‖ is small for large σ , and then argue as in the proof of Kato–Rellich
(Theorem 7.7).

Through the functional calculus, the operator (A+ i)(A− iσ )−1 corresponds to
multiplication by the function

fσ (x) := x + i
x − iσ ,

for x ∈ R. Note that |fσ (x)| ≤ 1 and fσ → 0 pointwise as σ → ∞. Therefore,
using the dominated convergence as in Example 2.12, we have

(A+ i)(A− iσ )−1 → 0 (7.38)

in the strong operator sense as σ → 0.
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We can now write

T (A+ iσ )−1 = T (A− i)−1(A− i)(A+ iσ )−1.

Since T (A− i)−1 is compact by assumption, and (7.38) gives strong convergence
[
(A− i)(A+ iσ )−1]∗ → 0,

it follows that

lim
σ→0

∥∥T (A+ iσ )−1
∥∥ = 0, (7.39)

by the result from Exercise 3.14. By choosing |σ | sufficiently large, we can ensure
that

∥∥T (A+ iσ )−1
∥∥ < 1.

As in the proof of Theorem 7.7, this implies that A+T ± iσ is surjective, and hence
that A+ T is self-adjoint on D(A).

The fact that A and A + T have the same essential spectra now follows
immediately from Theorem 5.14, by (7.37). 
�

Suppose−�+V is self-adjoint on a domain that includesH 1(Rn), as is the case
for the potentials considered in Section 7.1.2, for example. Then, for χ ∈ C∞0 (Rn),
Rellich’s theorem (Theorem 6.9) implies that χ(−�+V )−1 is compact on L2(Rn).
This observation yields the following:

Corollary 7.13. Suppose that V is a potential such that −�+ V is self-adjoint on
a domain that includes H 1(Rn). If W ∈ L∞(Rn;R) and has compact support, then

σess(−�+ V ) = σess(−�+ V +W).

Example 7.14. On R, consider the Schrödinger operator H := −� + V with the
negative square-well potential

V (x) =
{
−c, |x| ≤ a,

0, |x| > a,

where a, c are positive constants. By Theorem 7.8, H is self-adjoint with domain
H 2(R). Since V has compact support, Corollary 7.13 shows that the essential
spectrum is [0,∞).

To find the discrete spectrum, note that for λ ≥ 0 there are no L2 solutions of the
eigenvalue equation for |x| > a, so all eigenvalues are negative. Clearly−�+c ≥ 0,
so the spectrum is bounded below by −c. Since the potential is symmetric, we can
assume, by averaging if needed, that all eigenfunctions have either even or odd
symmetry.
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First consider the even eigenfunctions for λ = −σ 2 with 0 < σ <
√
c. For |x| >

a the L2 requirement implies the eigenfunctions take the form ψ(x) = e−σ |x|. On
[−a, a], an even solution is a constant multiple of cos(ωx), where ω := √|c − σ 2|.
Since functions in H 2(R) are C1 in particular, the first derivatives will match at
x = ±a. The matching conditions at x = ±a reduce to

σ = ω tan(ωa).

Because ω tan(ωa) is decreasing as a function of σ , and equal to zero at σ = √c,
there is at least one intersection point for 0 < σ <

√
c. Hence an even eigenfunction

exists for all c > 0, and H has at least one negative eigenvalue. There are multiple
even eigenfunctions if c > (π/a)2.

For odd eigenfunctions, the matching condition is

σ = −ω cot(ωa).

An odd eigenfunction therefore exists if and only if c > (π/2a)2.
The eigenfunctions concentrate on the support of V , as illustrated in Figure 7.2.

See Exercise 7.6 for a more general exploration of this phenomenon. ♦

Fig. 7.2 Sample
eigenfunction for the
square-well potential
supported on [−a, a]

-a a

Theorem 7.12 can be applied to more general potentials in cases where we
have better knowledge of the resolvent. As an example, let us consider the class
of potentials covered by Theorem 7.8, which were assumed to be L2+L∞, with the
dimension less than or equal to three. The first step is to use our explicit knowledge
of the Green’s function to establish relative compactness for L2 potentials.

Lemma 7.15. If V ∈ L2(Rn) with n ≤ 3, then MV is relatively compact with
respect to −�, and therefore

σess(−�+ V ) = [0,∞).

Proof The computation of the resolvent for Rn in Section 4.1.3 gives the integral
kernel (−�+ 1)−1 as

Gn(r) := (2π)−
n
2 r1− n

2Kn
2−1(r),
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where r = |x|. From standard Bessel asymptotics [64, §10.30], we have

Kν(r) =
{
O(r−|ν|), ν �= 0,

O(log r), ν = 0,

as r → 0, and Kν(r) = O(e−r ) as r →∞. This gives

Gn(r) =

⎧
⎪⎪⎨
⎪⎪⎩

O(r), n = 1,

O(log r), n = 2,

O(r2−n), n ≥ 3.

In combination with the exponential decay at infinity, these estimates imply that

Gn ∈ L2(Rn), (7.40)

provided n ≤ 3.
The integral kernel of V (−�+ 1)−1 is

K(x, y) = V (x)Gn(|x − y|).

By (7.40), we can estimate

∫

Rn

∫

Rn

|K(x, y)|2dnx dny =
∫

Rn

∫

Rn

∣∣∣V (x)2Gn(|x − y|)
∣∣∣
2
dnx dny

= ‖V ‖2 ‖Gn‖2

<∞.

This shows that V (−�+ 1)−1 is a Hilbert–Schmidt operator, which is compact by
Theorem 3.39.

We have proven relative compactness, and the characterization of the essential
spectrum follows from Theorem 7.12. 
�

In order to extend the result of Lemma 7.15 to potentials in the class L2 + L∞,
including the Coulomb potential, we need to add an extra condition. Shifting the
operator by a constant will obviously move the essential spectrum. Thus, in order
to control the result we must limit the bounded contribution to the potential by
imposing decay at infinity. The rate at which the potential decays turns out to be
irrelevant; the limit V → 0 is sufficient.

Theorem 7.16. Let V be a real-valued potential in L2
loc(R

n) for n ≤ 3. If V (x)→
0 as |x| → ∞, then MV is relatively compact with respect to −� and therefore

σess(−�+ V ) = [0,∞).
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Proof Let χn denote the characteristic function of the set {|x| ≤ n} for n ∈ N.
Since

∥∥(−�+ 1)−1
∥∥ = 1,

by the resolvent estimate (5.20), we have an operator norm bound

∥∥(1− χn)V (−�+ 1)−1
∥∥ ≤ sup

|x|≥n
V (x).

By the assumption that V → 0, this implies that

χnV (−�+ 1)−1 → V (−�+ 1)−1

as n→∞, with convergence in operator norm. Since χnV (−�+ 1)−1 is compact,
by Lemma 7.15, it follows that V (−� + 1)−1 is compact by Theorem 3.36. The
claimed result now follows from Theorem 7.12. 
�

Theorem 7.16 applies in particular to the quantum Hamiltonian of the hydrogen
atom, introduced in Example 7.9. We will work out the spectrum of this operator
explicitly in the next section. There are results analogous to Theorem 7.16 in higher
dimensions, but the proofs are more difficult. In dimension greater than three we
do not have the convenience of exploiting the Hilbert–Schmidt property to prove
compactness.

7.4 Hydrogen Atom

We have now all the tools in places to analyze the spectrum of the quantum
Hamiltonian for the hydrogen atom,

H = −�− 1

r
, (7.41)

acting on L2(R3). By Theorem 7.8, H is essentially self-adjoint on C∞0 (R3) and
self-adjoint on H 2(R3). Furthermore, Theorem 7.16 shows that

σess(H) = [0,∞). (7.42)

This continuous range of positive energies corresponds to ionized states of the atom,
where the electron has broken free from the nucleus.

In this section, we will show that the discrete spectrum of H consists of a
sequence of negative eigenvalues accumulating at zero. These are the “bound states”
of the atom, for which the electron is effectively trapped within some neighborhood
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of the nucleus. The absorption and emission lines of atomic hydrogen correspond
to the difference in energy between two bound states. An atom can only absorb or
emit photons at these particular frequencies.

Theorem 7.17. The hydrogen operator (7.41) has discrete spectrum consisting of
negative eigenvalues,

λn = − 1

4n2
,

for n ∈ N, each with multiplicity n2.

Proof By (7.42), the discrete spectrum is negative. Suppose that λ < 0 is an
eigenvalue, and let Wλ ⊂ H 2(R3) be the corresponding eigenspace, which is finite-
dimensional.

In spherical coordinates (r, ϕ, θ), the Laplacian takes the form

� = 1

r2
∂r

(
r2∂r

)
+ 1

r2 sinϕ
∂ϕ
(
sinϕ ∂ϕ

)+ 1

r2 sin2 ϕ
∂2
θ . (7.43)

Note that the angular variables can be separated out by defining a spherical
Laplacian

�S2 := 1

sinϕ
∂ϕ
(
sinϕ ∂ϕ

)+ 1

sin2 ϕ
∂2
θ . (7.44)

Here S
2 denotes the unit sphere in R

3. From the relation,

� = 1

r2
∂r

(
r2∂r

)
+ 1

r2
�S2 ,

it is clear that � and �S2 commute as differential operators.
The action of �S2 on Wλ is well defined. Indeed, a local regularity analysis as in

the proof of Lemma 7.5 can be used to show that eigenfunctions of H are smooth
except possibly at the origin. Since �S2 commutes with �, it maps Wλ to itself.
Moreover, using integration by parts in spherical coordinates, we can easily check
that −�S2 is a positive operator on the domain H 2(R3). Therefore the restriction of
�S2 to Wλ is self-adjoint, since this space is finite-dimensional.

The same reasoning applies to the operator −i∂θ , which commutes with both �
and �S2 and restricts to a self-adjoint operator on Wλ. (A physicist would interpret
−�S2 and−i∂θ as quantum observables in terms of angular momentum. The square
of the total angular momentum is represented by −�S2 , while −i∂θ gives the
component of angular momentum about the z-axis.)

By the spectral theorem in its finite-dimensional form, Wλ admits a basis
consisting of simultaneous eigenfunctions of −∂θ and �S2 . Suppose that u is such
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a joint eigenfunction. Since u is required to be smooth away from the origin, it is
clear from the fact that u is a periodic eigenfunction of −i∂θ that u has the form

u(r, ϕ, θ) = eimθf (r, ϕ),

for m ∈ Z and some function f on [0,∞)× [0, π ]. Suppose now that

−�S2u = κu

for κ > 0. After making the substitutions u = eimθf and z = cosϕ, this eigenvalue
equation becomes

(1− z2)f ′′ − 2zf ′ +
(
κ − m2

1− z2

)
f = 0.

This is the Legendre equation; a pair of linearly independent solutions is given by
the Legendre functions Pml (z) and Qm

l (z), where κ = l(l + 1).
For an element of Wλ we require eimθf (r, ϕ) to be smooth away from the origin.

Since the θ coordinate is singular on the z-axis, represented by z = ±1, we need
the Legendre solutions to be regular at these points. The solution Qm

l (z) diverges
as z → 1 for all choices of parameter, so this is ruled out. The solution Pml (z) is
regular at z = 1, but diverges as z → −1, except in the special case where l ∈ N0
with |m| ≤ l. Assuming that l, m satisfy these conditions, the Rodrigues formula
[64, §14.7] gives

Pml (z) =
(−1)m

2l l! (1− z2)m/2
dl+m

dzl+m
(z2 − 1)l . (7.45)

From this expression it is easy to check that Pml (cosϕ) is a polynomial in sinϕ and
cosϕ.

With these considerations, we have narrowed the choices for u down to the form

u(r, ϕ, θ) = eimθPml (cosϕ)h(r), (7.46)

for l ∈ N0, m ∈ {−m, . . . , m}, and h a function on [0,∞). The combina-
tion eimθPml (cosϕ) is called a spherical harmonic, and traditionally denoted by
Yml (ϕ, θ), up to a normalization constant.

We turn now to the radial equation. Since (7.46) implies that−�S2u = l(l+1)u,
the full eigenvalue equation Hu = λu reduces to the radial form

[
− 1

r2 ∂r

(
r2∂r

)
− 1

r
+ l(l + 1)

r2

]
h = λh. (7.47)
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Multiplication by r2 yields a second order ODE with polynomial coefficients,

h′′ + 2rh′ +
(
r + λr2 − l(l + 1)

)
h = 0,

to which the Frobenius method of power series can be applied. The indicial roots
are l and −l − 1. Since these differ by an integer, the theorem of Fuchs (see, e.g.,
Teschl [91, Thm. 4.5]) gives two linearly independent solutions of the form,

h1(r) = rlf1(r), h2(r) = r−l−1f2(r)+ crlf1(r) log r,

where the functions fj are entire and satisfy fj (0) = 1, and c is a constant. The
singular solution h2 can be ruled out in our case, because this would yield a function
uwhich does not lie inH 2(R3). Therefore, the radial component of an eigenfunction
has a power series expansion with infinite radius of convergence, starting from the
term rl .

To simplify the calculation of coefficients, it is useful to extract the asymptotic
behavior as r → 0. The leading part of (7.47) at infinity is −h′′ = λh. If we set
λ = −σ 2 with σ > 0, then the expected asymptotic behavior is e±σr . Of course,
only the decaying solution would be compatible with anH 2 function. Therefore, we
take the ansatz

h(r) = q(r)rle−σr , (7.48)

and seek a power series expansion of the form

q(r) =
∞∑
k=0

akr
k.

Plugging (7.48) into (7.47) and identifying the coefficients of rk−1 yield a recursive
relation

ak = 2σ(k + l)− 1

k(k + 2l + 1)
ak−1. (7.49)

The resulting series is convergent for any value of σ . However, for δ > 0 the ratio
ak/ak−1 is bounded below by (2 − δ)σ/k for k sufficiently large. This implies an
exponential lower bound q(r) ≥ ce(2−δ)r , unless the sequence defined by (7.49)
terminates with some coefficient equal to zero. A lack of termination would imply
that h(r) grows exponentially as r → ∞, which is obviously ruled out by the L2

requirement.
Therefore, for h(r) to be the radial component of an eigenfunction, we must have

σ = 1/2n for some integer n > l, so that all terms in the sequence determined by
(7.49) vanish for k ≥ n − l. If the resulting polynomial is denoted by qn,l(r), then
our potential eigenfunction has the form

un,l,m(r, ϕ, θ) = rlq(r)Yml (ϕ, θ)e
−r/2n,
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Clearly un,l,m decays exponentially as r → ∞. Moreover, rlYml (ϕ, θ) is a
homogeneous polynomial of degree l in the variables x, y, z, so it is easy to check
that un,l,m ∈ H 2(R3).

The eigenvalue corresponding to un,l,m is λ = −σ 2, so the discrete spectrum of
H is given by

σdisc(H) =
{
− 1

4n2 : n ∈ N

}
.

For each value of n, the possible choices are l ∈ {0, . . . , n−1} andm ∈ {−l, . . . , l}.
The multiplicity of −1/4n2 is thus

n−1∑
l=0

(2l + 1) = n2.


�
If we reintroduce the physical constants, as in (7.1), the quantum Hamiltonian

becomes

H = − h̄2

2m
�− kq2

r
.

By rescaling the eigenvalues from Theorem 7.17, we can compute the energy levels
of the hydrogen atom as

En := −mq
4

2h̄2

1

n2
.

This agrees with the empirical formula for the emission and absorption lines of
atomic hydrogen which was developed by Johannes Rydberg in 1888.

7.5 Semiclassical Asymptotics

As noted in Section 6.5, the correspondence principle says that one should be able to
recover classical physics from quantum mechanics in the semiclassical limit where
Planck’s constant h̄ approaches zero. Although the value of h̄ is fixed in nature, it
approaches zero as we change units to longer distance and lower energy scales.

To analyze the semiclassical limit mathematically, we drop the units and simply
regard h as a small parameter in the definition of the operator. For Schrödinger
operators this means that we write the Hamiltonian as −h2� + V for h → 0 and
study its spectrum in the limit h → 0. We have already seen an example of this in
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Carleman’s approach to the Weyl asymptotic formula for the Dirichlet Laplacian,
which amounted to semiclassical analysis of the operator −h2�+ 1.

In this section, we will discuss the problem of determining the semiclassical
asymptotics of low-lying eigenvalues of −h2� + V when V has a single nonde-
generate minima. As h→ 0, the density of eigenvalues increases, and our physical
intuition is that low-lying eigenvalues should be determined by the shape of the
potential at the minimum. More precisely, the semiclassical asymptotics of the
eigenvalues should correspond to the harmonic oscillator potential defined by the
quadratic Taylor approximation to V . This idea was long accepted as folk wisdom
in quantum physics, until Barry Simon provided an elegant proof in 1983 [82].

We will assume that V has a single global minimum, which we can place at the
origin. The regularity of V away from the origin is not important for the result, but
we need enough regularity near the minimum to apply Taylor’s theorem. Here is the
full set of assumptions on V :

(A1) V ∈ L∞loc(R
n) with V (x) ≥ 0.

(A2) There exists c > 0 such that V (x) ≥ c outside a compact set.
(A3) V is C3 in some open neighborhood of x = 0.
(A4) V has a unique zero at x = 0, which is nondegenerate in the sense that

Mij := ∂2V

∂xi∂xj

∣∣∣
x=0

(7.50)

is a positive definite matrix.

Assumption (A1) guarantees that −�+V is essentially self-adjoint on C∞0 (Rn)

by Theorem 7.1. If we split V into components V+ + V−, where

V+(x) = max{V (x), c}, V−(x) = min{V (x)− c, 0},
then V− is compactly supported by (A2). Corollary 7.13 implies that

σess(−h2�+ V ) = σess
(−h2�+ V+

)
.

and therefore, since V+ ≥ c,

inf σess(−h2�+ V ) ≥ c. (7.51)

We are interested in the discrete spectrum,

σdisc(−h2�+ V ) ⊂ (0, c).

Define the quadratic approximation to V at x = 0,

V0(x) :=
n∑

i,j=1

xiMij xj ,
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where M is the Hessian matrix (7.50), and let

P0 := −�+ V0(x). (7.52)

By the computation of the harmonic oscillator spectrum in Theorem 7.4,

σ(P0) =
{ n∑
i=1

(2ki + 1)ωi : k ∈ N0

}
,

where ω2
1, . . . , ω

2
n denote the eigenvalues of M with ωj > 0.

Theorem 7.18. Assume that V satisfies assumptions (A1)–(A4) above. Let {λk(h)}
denote the eigenvalues of −h2�+ V and let {μk} = σ(P0), where both sequences
are arranged in increasing order. For each m ∈ N, there exists ε > 0 such that
for 0 < h < ε, −h2� + V has at least m eigenvalues in the interval (0, c). These
eigenvalues satisfy

λk(h) = hμk +O(h 6
5 )

as h→ 0.

Proof By assumptions (A3) and (A4) and Taylor’s theorem,

V (x) = V0(x)+ R(x),

where R(x) = O(x3) for |x| sufficiently small.
To relate −h2� + V to P0, we must first scale out the factor h2. Let Uh be the

unitary transformation of L2(Rn) given by

Uhf (x) := h
n
4 f (h

1
2 x).

Conjugation by Uh gives

Uh(−h2�+ V )U−1
h = −h�+ V (h 1

2 x). (7.53)

Let us define Vh(x) := h−1V (h
1
2 x), and

Ph := −�+ Vh.

This is consistent with the notation used for P0, in that

Vh(x) = V0(x)+ Rh(x),
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where

Rh(x) := h−1R(h
1
2 x) = O(h

1
2 x3), (7.54)

for |h 1
2 x| sufficiently small.

By (7.53), −h2�+ V is unitarily equivalent to hPh. Thus it suffices to consider
the eigenvalues {μk(h)} of Ph, for which

λk(h) = hμk(h).

Let {φk} denote the eigenfunctions of P0, which take the form

φk(x) = qk(x)e
− 1

2 x
tM1/2x, (7.55)

with qk(x) a polynomial.
To estimate μk(h), we will apply a cutoff to φk to define an approximate

eigenvalue. Let χ ∈ C∞0 (Rn) satisfy

χ(x) =
{

1, |x| ≤ 1,

0, |x| ≥ 2.

For γ > 0, to be chosen later, we set

χh(x) := χ(hγ x).

Since χh(x) = 1 for |x| ≤ h−γ , it follows from (7.55) and the normalization ‖φk‖ =
1 that

〈
χhφj , χhφk

〉 = δjk +O(h∞), (7.56)

with constants that depend on j, k as well as γ .
Our goal is to estimate μk(h) by min–max, using the span of {χhφ1, . . . , χhφk}

as a test subspace. For the numerator of the Rayleigh quotients, we compute

Ph(χhφk) = χk(P0 + Rh)φk − [�,χh]φk,
= μkχhφk + χhRhφk − [�,χh]φk.

(7.57)

The term [�,χh]φk has support in |x| ≥ h−γ , which implies that

〈
χhφj , [�,χh]φk

〉 = O(h∞).

By (7.54),

‖χhRh‖∞ = O(h
1
2−3γ ).



7.5 Semiclassical Asymptotics 211

Therefore, from (7.57) and (7.56) we can estimate

〈
χhφj , Ph(χhφk)

〉 = μkδjk +O(h 1
2−3γ ). (7.58)

For the subspace W = span{χhφ1, . . . , χhφk}, the estimates (7.56) and (7.58)
imply that

max
u∈Ph\{0}

〈u, Phu〉
‖u‖2

= μk +O(h 1
2−3γ ).

This holds for all k, with the constant in the order estimate depending on k. By
Theorem 5.15, this proves that there exists ε > 0 such that Ph has at least m
eigenvalues for h < ε, with

μk(h) ≤ μk +O(h 1
2−3γ ) (7.59)

for k ≤ m.
To finish the proof, we need a corresponding lower bound on μk(h). Define ηh ∈

C∞(Rn) so that χ2
h + η2

h = 1. By commuting the cutoffs past the operator, it is easy
to check that

Ph = χhPhχh + ηhPhηh − |∇χh|2 − |∇ηh|2. (7.60)

Multiplication by a smooth bounded function preserves D(Ph), by the characteriza-
tion of the domain in Theorem 7.2. Therefore, the differential identity (7.60) implies
that

〈u, Phu〉 = 〈u, χhPhχhu〉 + 〈u, ηhPhηhu〉 −
〈
u,
(|∇χh|2 + |∇ηh|2

)
u
〉
, (7.61)

for u ∈ D(Ph).
For the first term on the right in (7.61), we can use (7.54) to estimate

〈u, χhPhχhu〉 = 〈u, χhP0χhu〉 +O(h 1
2−3δ). (7.62)

To estimate the second term in (7.61), the positivity of −� gives

〈u, ηhPhηhu〉 ≥ 〈u, ηhVhηhu〉
≥
(

inf
supp ηh

Vh

)
‖ηhu‖2.

Since |x| ≥ h−δ on the support of ηh,

inf
supp ηh

Vh = h−1 inf
|x|≥h1/2−δ

V (x).
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The minimum at 0 is nondegenerate, hence V (x) ≥ c|x|2 with c > 0 for |x|
sufficiently small. Therefore, for h sufficiently small,

inf
supp ηh

Vh ≥ ch−2δ.

Therefore, the second term in (7.61) has a lower bound

〈u, ηhPhηhu〉 ≥ ch−2δ‖ηhu‖2,

for h sufficiently small.
Since ‖∇χh‖∞ and ‖∇ηh‖∞ are O(hδ) by construction, the final term in (7.61)

is estimated by

〈
u,
(|∇χh|2 + |∇ηh|2

)
u
〉 = O(h2δ).

Combining these estimates in (7.61) gives

〈u, Phu〉 ≥ 〈u, χhP0χhu〉 + ch−2δ‖ηhu‖2 −O(h 1
2−3δ)−O(h2δ). (7.63)

To optimize the error estimates, we now set δ = 1
10 .

LetΠ denote the spectral resolution of P0, defined as in Section 5.4. We can split
the first term in (7.63) as

〈u, χhP0χhu〉 =
〈
u, χhP0Π[0,μk)χhu

〉+ 〈u, χhP0Π[μk,∞)χhu
〉

≥ 〈u, χhP0Π[0,μk)χhu
〉+ μk‖χhu‖2.

(7.64)

Since ‖χhu‖2 + ‖ηhu‖2 = ‖u‖2, we can combine (7.64) with (7.63) to deduce that

〈u, Phu〉 ≥ μk‖u‖2 + 〈u, χhP0χhu〉 −O(h 1
5 ). (7.65)

Now suppose that W ⊂ D(Ph) has dimension k. The operator χhP0Π[0,μk)χh
has rank at most k − 1, since μk is the kth eigenvalue of P0. Therefore, there exists
a unit vector u ∈ W such that

χhP0Π[0,μk)χhu = 0.

The estimate (7.65) yields

〈u, Phu〉 ≥ μk‖u‖2 −O(h 1
5 ).

Thus, for any subspace W ⊂ D(Ph) of dimension k,

max
u∈Ph\{0}

〈u, Phu〉
‖u‖2

≥ μk −O(h 1
5 ).



7.5 Semiclassical Asymptotics 213

Therefore, by the min–max principle,

μk(h) ≥ μk −O(h 1
5 ). (7.66)

The combination of (7.59) and (7.66) gives

μk(h) = μk +O(h 1
5 ),

and the claimed result follows since λk(h) = hμk(h). 
�
Example 7.19. The conclusion of Theorem 7.18 can be illustrated explicitly using
Pöschl–Teller potentials, defined by

Wl(x) := − l(l + 1)

cosh2 x
,

for l ∈ N. The substitution z = tanh x reduces the eigenvalue equation for−�+Wl

to a Legendre equation. A set of independent L2 solutions is given by Pml (tanh x),
where Pml (z), using the special Legendrian functions (7.45), for m = 1, . . . , l. The
discrete spectrum of −�+W is {−1, . . . ,−l2}.

Now consider the semiclassical Schrödinger operator −h2� + tanh2 x, which
satisfies the hypotheses of Theorem 7.18, with the harmonic oscillator spectrum
2N− 1. In the eigenvalue equation,

(−h2�+ tanh2 x)φ = λ(h)φ,

let us restrict h so that h−2 = l(l + 1) for l ∈ N. Dividing by h2 then reduces the
eigenvalue equation to

(−�+Wl)φ = h−2(λ(h)− 1)φ.

Thus, by the Pöschl–Teller calculation,

h−2(λk(h)− 1) = −(l − k + 1)2,

for k = 1, . . . l. In other words,

λk(h) = (2k − 1)l − (k − 1)2

l(l + 1)
.

Since l = h−1(1+O(h)) under the restriction made above, this gives

λk(h) = (2k − 1)h+O(h2).

For comparison to Figure 7.1, some eigenfunctions of −h2� + tanh2 x are plotted
in Figure 7.3 ♦
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-4 -2 2 4

Fig. 7.3 The five eigenfunctions of −h2�+ tanh2 x for h = 1/
√

30

7.6 Periodic Potentials

For a continuous periodic function q on R, the ODE

−u′′ + qu = 0

was introduced by George William Hill in 1886 in a study of lunar orbital motion
and is called Hill’s equation. We can apply the analysis of Hill’s equation to the
spectral theory of the Schrödinger operator H = −� + V on R, where V is a
continuous, real-valued, periodic potential. Since V is bounded, H is essentially
self-adjoint on C∞0 (R) and self-adjoint on H 2(R).

In this section, we will analyze the spectrum of H by means of a theory of
periodic systems of ODE developed by Gaston Floquet in 1883.

7.6.1 Floquet Theory

Suppose V is a continuous real-valued function on R with period π . This choice of
period is a standard convention for Hill’s equation, inspired by the special case of
the Mathieu equation which we will discuss later.

For λ ∈ R, consider the eigenvalue equation for H := −�+ V ,

− u′′ + V u = λu. (7.67)

By the standard ODE existence result of Picard–Lindelöf (Theorem 9.8), for each
λ ∈ R there exists a C2 solution to (7.67), which is uniquely determined by the
initial conditions u(0) and u′(0). Let us define a pair of solutions uλ and vλ by the
conditions
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{
uλ(0) = 1,

u′λ(0) = 0,

{
vλ(0) = 0,

v′λ(0) = 1.
(7.68)

The Wronskian of the pair is given by

W [uλ, vλ] := uλv
′
λ − u′λvλ.

The Wronskian is independent of x, since both functions satisfy (7.67). We can thus
compute, by (7.68),

W [uλ, vλ] = 1. (7.69)

The evolution of this pair of solutions over the course of one period can be
expressed in terms of a monodromy matrix,

M(λ) :=
(
uλ(π) vλ(π)

u′λ(π) v′λ(π)

)
,

which satisfies detM(λ) = 1, by (7.69). The trace of the monodromy matrix is
called the discriminant of H and denoted by

D(λ) := trM(λ)

= uλ(π)+ v′λ(π).
The Picard–Lindelöf theorem implies that the solutions uλ and vλ depend smoothly
on λ, so D(λ) is a smooth function of λ ∈ R. In fact, one can show that D(λ)
extends to λ ∈ C as an entire analytic function of order 1

2 . See Magnus and Winkler
[61, Thm. 2.2] for a proof.

Example 7.20. In the free case V = 0, the solutions uλ and vλ are given by

uλ(x) = cos(
√
λx), vλ(x) = sin(

√
λx)√
λ

,

with the convention that vλ(x) := x for λ = 0. Both uλ and vλ are entire functions
of λ ∈ C. The monodromy matrix for a period of π is

M(λ) =
⎛
⎝ cos(π

√
λ) − sin(π

√
λ)/
√
λ√

λ sin(π
√
λ) cos(π

√
λ)

⎞
⎠ .

The discriminant is thus the entire function,

D(λ) = 2 cos(π
√
λ).

♦
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The eigenvalues of the monodromy matrix are called Floquet multipliers. The
characteristic equation for M(λ) is

det(M(λ)− t) = t2 −D(λ)t + 1 = 0, (7.70)

so in terms of the discriminant the Floquet multipliers are given by

α± = 1

2

[
D(λ)±

√
D(λ)2 − 4

]
. (7.71)

The following lemma is a special case of Floquet’s theorem on periodic systems.

Lemma 7.21. For λ ∈ R, the solutions of (7.67) are characterized as follows:

1. If |D(λ)| < 2, then the Floquet multipliers are given by e±ik for 0 < k < π and
there exist two linearly independent solutions of the form

u±(x) = e±ikx/πw±(x), (7.72)

where w± are π -periodic functions in C2(R).
2. If |D(λ)| > 2, then the Floquet multipliers are given by e±κ for κ > 0 and there

exist two linearly independent solutions of the form

u±(x) = e±κx/πw±(x), (7.73)

where w± are π -periodic functions in C2(R).
3. If |D(λ)| = 2, then the Floquet multipliers are degenerate and given by eik with
k = 0 or π . If M(λ) is diagonalizable, then there exist two linearly independent
solutions of the form (7.72). Otherwise, there exist independent solutions of the
form,

u1(x) = eikx/πw1(x), u2(x) = eikx/π
(
w2(x)+ x

π
w1(x)

)
,

where w1, w2 are π -periodic functions in C2(R).

Proof If |D(λ)| < 2, then the roots have modulus one and can be written as α± =
e±ik for k > 0. If (a±, b±) denote the eigenvectors in C

2 corresponding to α±, let
us set

u± := a±uλ + b±vλ.

By the definition of the monodromy and the fact that (a±, b±) are its eigenvectors,
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(
u±(π)
u′±(π)

)
= M(λ)

(
a±
b±

)

= e±ik
(
a±
b±

)
.

The solutions u±(x+π) and e±iku±(x) satisfy the same initial conditions at x = 0.
Therefore, by uniqueness of solutions,

u±(x + π) = e±iku±(x), (7.74)

for all x ∈ R. This means that the functions,

w±(x) := e∓ikx/πu±(x),

are periodic, which proves (7.72).
A very similar analysis applies to other cases where M(λ) is diagonalizable. If

|D(λ)| = 2, then the eigenvalues are degenerate and equal to ±1. For |D(λ)| > 2,
the eigenvalues have the form e±κ .

If |D(λ)| = 2 and M(λ) is not diagonalizable, then by putting M(λ) into Jordan
block form, we can find a pair of solutions u1, u2 which satisfy

u1(x + π) = eiku1(x), u2(x + π) = eik
(
u1(x)+ u2(x)

)
.

After writing these in terms of w1, w2 as above, we can deduce that w1 and w2 are
periodic. 
�

Floquet’s theorem was rediscovered independently by physicist Felix Bloch in
1928, in the context of electron crystallography. In that application, the quasiperi-
odic solutions (7.72) are called Bloch waves.

7.6.2 Spectrum of H

From the characterization of solutions of the eigenvalue equation in Lemma 7.21,
we can now deduce the spectrum of the periodic quantum Hamiltonian in terms of
the values of the discriminant.

Theorem 7.22. For the operatorH = −�+V acting onL2(R), with V continuous
and 2π -periodic, letD(λ) be the discriminant defined in Section 7.6.1. The spectrum
of H is continuous and given by

σ(H) = {λ ∈ R : |D(λ)| < 2}.
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Proof By Lemma 7.21, solutions of the eigenvalue equation are either quasiperi-
odic or approach infinity as |x| → ∞ in at least one direction. Hence, H has no L2

eigenfunctions and the point spectrum is empty.
For |D(λ)| < 2 we can construct approximate eigenfunctions from the Bloch

wave solution u+ defined by (7.72). Fix h ∈ C∞(R) so that

h(t) =
{

0, t ≤ 0,

1, t ≥ 1.

For j ∈ N, define a sequence of cutoffs χj ∈ C∞0 (R) by

χj (x) := h(πj − |x|),

so that χj = 1 on [−πj, πj ]. Consider the cutoff sequence vj := χju+. Since
u+(x) = eikx/πw+(x) with w+ periodic, we can estimate from below,

‖vj‖2
L2(R)

≥ 2j‖w+‖2
L2(0,π). (7.75)

On the other hand, since u+ satisfies the eigenvalue equation,

(H − λ)vj = −[�,χj ]u+
= −2χ ′j u′+ − χ ′′j u+.

(7.76)

By construction, the derivatives of χj are bounded independently of j . Since u+ is
quasiperiodic, we can thus derive from (7.76) the bound

‖(H − λ)vj‖ ≤ C‖w+‖H 1(0,π), (7.77)

with C independent of j . Together, (7.75) and (7.77) show that

lim
j→∞

‖(H − λ)vj‖
‖vj‖ = 0.

By Theorem 4.16, this implies that λ ∈ σ(H).
Finally, for λ such that |D(λ)| > 2, we will show that λ ∈ ρ(H) by constructing

an inverse for H − λ. The solutions satisfy u±(x) = e±κx/πw±(x) with κ > 0
and w±(x) periodic. For f ∈ C∞0 (R), the standard ODE method of variation of
parameters yields a solution formula for the equation (H − λ)u = f :

u(x) =
∫ ∞

−∞
K(x, y)f (y) dy,
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where, in terms of the Wronskian of u− and u+,

K(x, y) := 1

W [u−, u+]

{
u+(x)u−(y), x ≤ y,

u−(x)u+(y), x ≥ y.
(7.78)

By construction, K(x, y) is the integral kernel of (H − λ)−1. Using the
exponential decay of u± as x →∓∞, we can estimate

∫ ∞

−∞
|K(x, y)| dy ≤ C

∫ ∞

−∞
e−κ|x−y|/π dy = O(1),

uniformly in x. The same estimate holds for the integral over x, by symmetry. The
Schur test (Exercise 2.11) then shows that (H − λ)−1 is a bounded operator on
L2(R), proving that λ ∈ ρ(H). 
�

Example 7.23. In the special case V (x) = 2b cos(2x), with b ∈ R, the eigenvalue
equation for −�+ V is called the Mathieu equation,

u′′ + (λ− 2b cos(x))u = 0. (7.79)

Émile Mathieu first derived this equation in the context of the Dirichlet eigenvalue
problem for an elliptical domain. The standard solutions of (7.79) are special
functions called the “Mathieu sine” and “Mathieu cosine,” denoted by S(λ, b, x)
and C(λ, b, x), respectively. In terms of these functions, the discriminant is given
by

D(λ) = C(λ, b, π)

C(λ, b, 0)
+ S′(λ, b, π)
S′(λ, b, 0)

.

Figure 7.4 shows a sample plot of D(λ), with spectral bands corresponding to
|D(λ)| < 2. ♦

Fig. 7.4 A plot of the
discriminant of the Mathieu
equation for b = 2, with the
spectral bands of
−�+ 4 cos(2x) shaded

−2

2
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The result of Theorem 7.22 can be interpreted in terms of Bloch eigenfunctions
defined on the cell (0, π). For θ ∈ T := R/2πZ, let −�θ denote the self-adjoint
extension of −� on (0, π) defined by the quasiperiodic boundary conditions,

f (π) = eiθf (0), f ′(π) = eiθf ′(0). (7.80)

As a self-adjoint operator on a compact interval, −�θ + V has a discrete spectrum
consisting of real eigenvalues.

To compute these eigenvalues, note that all solutions of the eigenvalue equation
have the form φ = auλ + bvλ for some constants a, b. This function satisfies the
quasiperiodic boundary conditions (7.80) provided that (a, b) is an eigenvector of
M(λ) with eigenvalue eiθ . In other words, λ is an eigenvalue of −�θ + V if and
only if eiθ is a Floquet multiplier of the corresponding Hill equation. By (7.71), the
Floquet multipliers have modulus one precisely when |D(λ)| ≤ 2. Thus, we can
restate the conclusion of Theorem 7.22 in the form,

σ(H) =
⋃
θ∈T

σ(−�θ + V ). (7.81)

It is possible to establish (7.81) more directly via a continuous version of the
Floquet transform introduced in Section 4.1.4. For f ∈ C∞0 (R), define

Uf (θ; y) := 1√
2π

∑
k∈Z

e−ikθf (x + πk).

This operator extends to a unitary map from U : L2(R) → L2(T;L2(0, π)).
The space L2(T;L2(0, π)) can be understood in terms of a notion called the
“direct integral” (see, e.g., Reed and Simon for details [71, §XIII.16]). The Floquet
transform allows us to interpret an operator on L2(T;L2(0, 2π)) as a family of
operators on L2(0, 2π) parametrized by θ ∈ T. The conjugate of H by U is the
family −�θ + V , and the characterization (7.81) follows from unitary equivalence.

The Floquet transform, in both discrete and continuous variants, can be adapted
to handle more general discrete group actions in higher dimensions. It plays a
fundamental role in spectral analysis for electron crystallography.

7.7 Exercises

7.1. For f ∈ H 1(R) and α > 0, consider the quadratic form

Qα[f ] := ‖f ′‖2
2 − α|f (0)|2.
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(a) Show that Qα is semibounded from below, meaning that there exists a constant
c such that

Qα[f ] ≥ −c‖f ‖2

for all f ∈ H 1(R).
(b) Show that there exists a self-adjoint operator A corresponding to Qα , such that

Qα[u] = 〈u,Au〉

for u ∈ D(A). Describe D(A) and the action of A explicitly. (A is interpreted
as a Schrödinger operator with potential given by the Dirac point measure V =
−αδ0.)

(c) Show that A has essential spectrum [0,∞) and discrete spectrum consisting of
a single negative eigenvalue.

7.2. Suppose that H = −�+ V is a self-adjoint Schrödinger operator on R
n, with

domain satisfying D(H) contained in H 2
loc(R

n). If ψ is an eigenfunction of H and
the potential V is Cm on some open set U ⊂ R

n, prove that ψ is Ck on U for
k < m+ 2− n/2.

7.3. Let V ∈ L2
loc(R) be a real-valued potential, such that V (x) → 0 as |x| →

∞. This implies σess(−� + V ) = [0,∞) by Theorem 7.16. Assume that V ≤ 0
and is strictly negative on a set of positive measure. Use the min–max principle
(Theorem 5.15) to prove that −�+ V has at least one strictly negative eigenvalue.

7.4. Let H = −�+ V for V ∈ C∞0 (Rn) with n ≤ 3, and assume that V ≤ 0.

(a) Set V = −ρ2 for ρ ∈ C∞0 (Rn) and define the operator

B(λ) := ρ(−�− λ)−1ρ,

which is Hilbert–Schmidt for λ < 0 by Theorem 7.16. Show that λ < 0 is an
eigenvalue of H if and only if 1 is and eigenvalue of B(λ)).

(b) Use min–max to show that the eigenvalues of B(λ) are continuous increasing
functions of λ.

(c) If n = 1 or 2, prove that−�+V has at least one negative eigenvalue by studying
the behavior of ‖B(λ)‖ as λ → −∞ or 0. [Hint: Use the Fourier transform to
estimate 〈u,B(λ)u〉.]

(d) For n = 3, show that B(0) is a Hilbert–Schmidt operator and that the number of
eigenvalues of H is equal to the number of eigenvalues of B(0) strictly greater
than one.
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(e) For n = 3, use the Hilbert–Schmidt norm to deduce the Birman–Schwinger
bound,

#σdisc(H) ≤ ‖B(λ)‖2
HS :=

1

(4π)2

∫

R3×R3

V (x)V (y)

|x − y|2 d3x d3y.

(Note that this shows that H has no eigenvalues if V is sufficiently small, in
contrast to (c).)

7.5. If the positions of the two electrons of the helium atom are represented by
coordinates (x, y) ⊂ R

3 × R
3, then the quantum Hamiltonian (with units scaled

out) takes the form

H = −�x −�y − 2

|x| −
2

|y| +
1

|x − y| ,

acting on L2(R6).

(a) Use the Kato–Rellich theorem to prove that H is essentially self-adjoint on
C∞0 (R6). [Hint: relative boundedness estimates for the three potentials may be
considered separately.]

(b) Based on the hydrogen atom calculation, a reasonable guess for the lowest
helium eigenfunction is

ψ(x, y) := a3

π
e−a(|x|+|y|),

with a > 0 a free parameter. Estimate λ1 by minimizing the Rayleigh–Ritz
quotient of ψ over a. (For comparison, the precise value is λ1

.= −1.452 in
these units.)

7.6. Suppose ψ is a real-valued eigenfunction of a Schrödinger operator −� + V

on R, with eigenvalue λ. The set {V > λ} is called the “classically forbidden”
region. (A classical particle cannot exist in this set, because kinetic energy cannot
be negative.) Suppose V > λ on (x0,∞), and that ψ is at least C2 on this interval.
Prove the exponential decay formula,

|ψ(x)| ≤
(
|ψ(x0)| + c0

√
x − x0

)
exp

(
−
∫ x

x0

√
V (t)− λ dt

)

for x > x0, where c0 := √|ψ(x0)ψ ′(x0)|, using the following steps.

(a) By changing sign if needed, we can assume that ψ(x0) ≥ 0. Show that this
implies that ψ(x) > 0 and ψ ′(x) < 0 for all x ≥ x0.



Notes 223

(b) For x ≥ x0, let

h(x) := exp

(∫ x

x0

√
V (t)− λ dt

)
.

Show that (h2ψψ ′)′ = [(hψ)′]2, and use this to prove that

∫ x

x0

[
(hψ)′

]2
dt ≤ c2

0.

(c) Use (b) to estimate
∫ x
x0
(hψ)′ dt .

7.7. Consider the quantum harmonic oscillator H = −� + |x|2 in R
3, whose

spectrum is given by Theorem 7.4. Use spherical coordinates as in Section 7.4
to derive the eigenvalues and express the eigenfunctions in terms of spherical
harmonics.

Notes

Because of their importance in quantum mechanics, Schrödinger operators are one
of the most thoroughly studied areas of spectral theory. The literature is vast, and we
have given only a few introductory results in this chapter. For additional background
on the spectral theory of Schrödinger operators, see Davies [24], Edmunds and
Evans [28], Hislop and Segal [44], and Reed and Simon [71]. For a mathematically
oriented introduction to quantum mechanics, see Gustafson and Sigal [40] or Hall
[41].

The issue of dynamics, i.e., the evolution of solutions of the full Schrödinger
equation (7.11) as a function of time, is closely related to the theory of one-
parameter groups mentioned in the notes to Chapter 5. This theory leads naturally
to the subject of scattering theory, a central topic in quantum mechanics which we
have not touched on here. For mathematical treatments of scattering theory, see for
example Hislop and Segal [44], Reed and Simon [72], and Yafaev [96].

The perturbative methods discussed in Sections 7.2 and 7.3 are developed in
greater detail in Kato [49] and Reed and Simon [70, Ch. X].

There is a huge literature on the semiclassical theory of Schrödinger opera-
tors. Most results in semiclassical analysis rely on machinery (pseudodifferential
operator calculus) that lies outside the scope of this book. For an introduction to
semiclassical techniques, see Zworski [97].



Chapter 8
Operators on Graphs

The spectrum of a finite graph can be defined in terms of its adjacency matrix. In
“spectral graph theory,” the eigenvalues of this matrix (or related matrices) are used
to analyze properties of the graph, such as connectivity.

The integer lattice discussed in Section 4.1.4 could be thought of as an infinite
discrete graph, with lattice points as vertices and edges connecting nearest neigh-
bors. The discrete Laplacian on Z

n, as defined in (4.10), involves only neighboring
vertices, and in fact differs from the adjacency matrix by a multiple of the identity.
We can thus adapt the formula for �Zn to define the discrete Laplacian on an
arbitrary graph.

Spectral graph theory has a long history as an important tool in combinatorics,
with applications to network theory and computer science, as well as number theory,
chemistry, and mathematical physics.

Another way to build spectral models from graphs is by considering metric
graphs, for which a length is assigned to each edge. This identifies the edges with
intervals in R, allowing us to consider differential operators acting on a Hilbert
space defined as the direct sum of the L2 spaces for each edge interval. In physical
applications, the operator is usually taken to be either the one-dimensional Laplacian
or a Schrödinger operator. This combination of a metric graph equipped with a
quantum Hamiltonian is called a quantum graph. Research in quantum graphs has
been motivated by in large part by physical applications, such as understanding the
electromagnetic properties of carbon nanostructures.

Note that the key difference between the discrete and continuous cases lies in the
support of the functions. In the discrete case the Hilbert space consists of functions
on the vertices, while in the quantum graph case they live on the edges. It is possible
to synthesize these two approaches and consider functions taking values on both
edges and vertices.

© Springer Nature Switzerland AG 2020
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In this chapter we will give a very brief introduction to the spectral theory of
graphs, focusing mainly on the case of quantum graphs. Our goal here is to highlight
the connections to the spectral theory developed elsewhere in this book. We refer the
reader to the notes at the end of the chapter for more detailed background sources.

8.1 Combinatorial Laplacians

The discrete Laplacian operators discussed in Section 4.1.4 involved a sum over
nearest neighbors in the lattice Z

n. This definition extends naturally to the frame-
work of graphs, with vertices considered to be neighbors if they are joined by an
edge.

Let Γ be a graph with vertex set V and edge set E . Multiple edges between the
same pair of vertices are allowed. In principle we could allow loops also, but these
would be irrelevant for reasons explained below. For two vertices v1, v2 ∈ V , we
write v1 ∼ v2 if v1 and v2 are connected by an edge of Γ . We will assume that the
maximum degree of Γ is finite, i.e., the number of edges connected to a vertex is
bounded.

Taking the definition of −�Zn in (4.10) as a model, we define the combinatorial
Laplacian of Γ as the operator on �2(V) given by

Lf (vi) =
∑
vj∈V

Aij (f (vi)− f (vj )), (8.1)

where Aij is the adjacency matrix, which counts the number of (undirected) edges
connecting vi to vj . This operator is associated with the quadratic form

Q[f, f ] :=
∑

vi ,vj∈V
Aij |f (vi)− f (vj )|2. (8.2)

The sums in (8.1) and (8.2) are finite, by the assumption that Γ has finite maximum
degree. Note that if we did allow loops in Γ , their contribution to these sums would
be zero, so henceforth we assume that Γ has no loops. More general operators could
be defined by attaching weights to the edges and/or vertices, but we will consider
those cases here.

The adjacency matrix is symmetric, so if the maximal degree of a vertex of Γ
is finite, then Q[·, ·] is a bounded symmetric form, and L is a bounded self-adjoint
operator acting on �2(V).

If Γ is a finite graph with m vertices, then �2(V) is naturally isomorphic to C
m,

and L is represented by a symmetric m×m matrix. We can write this matrix as

L = D − A,
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where A is the adjacency matrix defined above, and D is the diagonal matrix with
entries given by the degree of each vertex. For example, the graph pictured in
Figure 8.1 has

D =

⎛
⎜⎜⎝

3 0 0 0
0 4 0 0
0 0 3 0
0 0 0 2

⎞
⎟⎟⎠ , A =

⎛
⎜⎜⎝

0 2 1 0
2 0 1 1
1 1 0 1
0 1 1 0

⎞
⎟⎟⎠

yielding the combinatorial Laplacian

L =

⎛
⎜⎜⎜⎝

3 −2 −1 0

−2 4 −1 −1

−1 −1 3 −1

0 −1 −1 2

⎞
⎟⎟⎟⎠ .

For infinite graphs, L might have continuous spectrum, as demonstrated by the
examples in Section 4.1.4.

Fig. 8.1 Graph with four
vertices and six edges

When the graph is not finite, we at least have that L is a symmetric operator
the space C0(V) consisting of functions supported on finitely many vertices. This
operator admits a unique self-adjoint extension by the following:

Lemma 8.1. As an operator on �2(V), L is essentially self-adjoint on the domain
C0(V).
Proof Since Lf is well defined for any function on V , we can characterize the
adjoint domain by

D(L∗) =
{
f ∈ �2(V) : Lf ∈ �2(V)

}
.

Because L is positive, to prove essential self-adjointness it suffices to show that
L∗ + 1 is injective, by Exercise 3.11.

Suppose f ∈ D(L∗) satisfies (L∗ + 1)f = 0. This means precisely that f ∈
�2(V) and

Lf = −f. (8.3)
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If f (w0) > 0 at some vertex w0 ∈ V , then evaluating (8.3) at w0 gives

∑
v∈V

Av,w0(f (w0)− f (v)) < 0.

This means that w0 has at least one neighbor, call it w1, for which f (w1) > f (w0).
Repeating this process inductively gives a sequence of neighboring vertices {wj }
such that the sequence of values f (wj ) is strictly increasing. Since Γ is infinite, this
would contradict the assumption that f ∈ �2(V). Therefore f ≤ 0 at all vertices.

The same argument applies if we start from f (w0) < 0, so (L∗ + 1)f = 0
implies that f = 0. Therefore, L is essentially self-adjoint. 
�

Much of the interest in combinatorial spectral theory lies in the connections
between σ(L) and the geometric features of Γ . We will illustrate this idea with
a few basic results for finite graphs.

For a finite graph Γ with m vertices, let us arrange the eigenvalues in increasing
order,

0 = λ1 ≤ λ2 ≤ · · · ≤ λm,

with λ1 corresponding to the constant eigenfunction. Some basic properties of the
eigenvalues can be deduced by taking the trace of L. If Γ has q edges (assuming no
loops), then the sum of degrees of the vertices equals 2q. Therefore, since trA = 0,

m∑
j=2

λj = trD = 2q.

It follows that

λ2 ≤ 2q

m− 1
.

This seemingly crude estimate is sharp in the case of the complete graph with m
vertices, for which λ2 = · · · = λm = m.

Eigenvalues can also be estimated through the max–min principle (5.31), which
says, for example, that

λ2 = inf
f⊥1

Q[f, f ]
‖f ‖2 . (8.4)

As an application, let us derive a basic lower bound for λ2 in terms of the diameter
of the graph. The (discrete) distance between two vertices is the minimal number of
edges in a path connecting them, and the diameter of Γ is the maximum distance
between two vertices.
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Theorem 8.2. For a finite graph of diameter d with m vertices,

λ2 ≥ 1

md
.

Proof Consider a real-valued eigenfunction φ2 for λ2. By (8.4), φ2 satisfies the
orthogonality condition

∑
v∈V

φ2(v) = 0, (8.5)

as well as

λ2 = Q[φ2, φ2]
‖φ2‖2 . (8.6)

Let v0 denote a vertex where |φ2| attains its maximum value. A crude estimate gives

‖φ2‖2 ≤ mφ2(v0)
2. (8.7)

By (8.5), there is at least one vertex vk where has sign opposite to φ2(v0). We
can thus find a sequence of adjacent vertices v1, . . . , vk , with k ≤ d, such that

|φ2(v0)| ≤ |φ2(v0)− φ2(vk)|. (8.8)

By writing φ2(v0) − φ2(vk) as a telescoping sum and applying Cauchy–Schwarz,
we can estimate

(φ2(v0)− φ2(vk))
2 =

( k∑
j=1

φ2(vj )− φ2(vj−1)

)2

≤ k

k∑
j=1

(
φ2(vj )− φ2(vj−1)

)2

≤ kQ[φ2, φ2].

Thus from (8.8) we have

Q[φ2, φ2] ≥ 1

d
φ2(v0)

2. (8.9)

Applying (8.9) and (8.7) to (8.6) yields the lower bound on λ2. 
�
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8.2 Quantum Graphs

A metric graph is a locally finite graph Γ with vertices V and edges E , equipped
with a length function � : E → R+. Each edge e ∈ E of a metric graph can
be identified with an interval [0, �(e)], at least up to orientation. The edges are
undirected, meaning that neither orientation is preferred. Loops and multiple edges
between a pair of vertices are allowed. Although open edges identified with [0,∞)

are sometimes allowed in the definition, we assume here that � is finite-valued.
A function f on Γ is defined as a collection of functions fe : [0, �(e)] → C

for each edge e ∈ E . The Hilbert space associated with the metric graph Γ is thus
defined as

L2(Γ ) :=
⊕
e∈E

L2(0, �(e)).

A quantum graph is a metric graph equipped with a quantum mechanical Hamilto-
nian operator H . For simplicity, we will focus on the case where this operator is the
Laplacian, −�, which acts as the differential operator −∂2

x on each edge.
The extension of −� to a self-adjoint operator on L2(Γ ) requires the specifica-

tion of a domain. One possible choice is to apply Dirichlet boundary conditions on
each edge, so that the functions vanish at each vertex. Although this clearly defines
a self-adjoint operator, it has the effect of decoupling the edges. With Dirichlet
conditions at all vertices, the graph structure is forgotten and Γ is effectively a
disjoint union of intervals.

The most common assumption in quantum graph theory is the Neumann–
Kirchoff vertex condition, which is a natural analog of Neumann conditions on an
interval. We saw in Section 6.1.3 that the Neumann Laplacian for a bounded open set
can be derived from the H 1 inner product, without imposing restrictions explicitly.
We can take the same approach for quantum graphs. From Example 2.24 we can see
that functions in H 1(0, �) are continuous on the closed interval [0, �]. We extend
this definition to metric graphs by setting

H 1(Γ ) :=
{
f ∈

⊕
e∈E

H 1(0, �(e)) : f is continuous across vertices
}
,

with the inner product

‖f ‖2
H 1 :=

∑
e∈E
‖fe‖2

H 1 .

Following the Neumann definition (6.18), we introduce the domain

D(−�) := {u ∈ H 1(Γ ) : 〈u, ·〉H 1 extends to L2(Γ )

as a bounded functional
}
.

(8.10)
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For u ∈ D(−�), the condition on 〈u, ·〉H 1 implies, by the Riesz lemma (Theo-
rem 2.28), that there exists a unique f ∈ L2(Γ ) such that

〈u, g〉H 1 = 〈f, g〉

for all g ∈ H 1(Γ ). We can then define −�u as f − u ∈ L2(Γ ), so that

〈u′, g′〉 = 〈−�u, g〉. (8.11)

By the Friedrichs extension construction developed in Section 6.1.2, we obtain the
following:

Theorem 8.3. For a metric graph Γ , the Laplacian is self-adjoint on the domain
(8.10).

The terminology “Neumann–Kirchoff” comes from Gustav Kirchoff’s law of
electrical circuits, which says that the total current entering a junction point is equal
to the total current flowing out of that point. The explanation for the usage of this
term for the operator defined by (8.10) is given by the following:

Lemma 8.4. If f ∈ D(−�), then f restricts to function in C1[0, �(e)] on each
edge e ∈ E . Furthermore, the derivatives at each vertex v ∈ V satisfy

∑
e"v

f ′e(v) = 0, (8.12)

where e " v means e contains v as an endpoint, and the convention is that the
derivatives are taken outward from the vertex.

Proof As noted above, f ∈ D(−�) implies that �f exists in the weak sense and
is contained in L2(Γ ). Thus, each edge component fe has a weak derivative f ′e ∈
H 1(0, �(e)). Functions inH 1(0, �(e)) extend toH 1 functions on R, by Lemma 6.14,
and H 1 functions are continuous in dimension one, by Theorem 2.26. Therefore
f ′e ∈ C0[0, �(e)]. By Lemma 2.22, the continuity of f ′e implies that fe is classically
differentiable, and thus fe ∈ C1[0, �(e)].

For f, g ∈ D(−�) integration by parts on each segment gives

〈f ′, g′〉 = 〈−�f, g〉 +
∑
v∈V

∑
e"v

f ′e(v)ge(v), (8.13)

with derivatives taken outward from the vertex. Since (8.11) holds for all g ∈
D(−�), from (8.13) we can deduce that (8.12) holds for each v ∈ V . 
�

At a vertex of degree 2, (8.12) reduces to the condition that f ′ extends
continuously across the vertex. Thus, under Neumann–Kirchoff conditions, a pair
of edges meeting at a vertex of degree 2 is indistinguishable from a single combined
edge with the lengths added together.
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Although Neumann–Kirchoff conditions are the most common choice, self-
adjointness holds for a more general collection of mixed vertex conditions. See
Berkolaiko and Kuchment [11, Thm. 1.4.4] for a description of the full set of
possibilities.

8.3 Spectral Properties of Compact Quantum Graphs

A quantum graph is compact if it has a finite number of edges, each of finite length.
Based on our experience with the Laplacian bounded regions in R

n, we would
expect a compact quantum graph to have discrete spectrum. Indeed, this follows
from an easy extension of the argument developed in Section 6.2.

Theorem 8.5. The Laplacian on a compact quantum graph has compact resolvent.
Therefore, its spectrum consists of a discrete set of eigenvalues {λj } with λj →∞.

Proof By Rellich’s theorem (Theorem 6.9), the embedding H 1(a, b)→ L1(a, b)

is compact for a finite interval (a, b) ⊂ R. This implies that the embedding
⊕
e∈E

H 1(0, �(e))→ L2(Γ )

is compact, because E is a finite set by assumption. Since H 1(Γ ) is a subspace of
⊕e∈EH 1(0, �(e)), it follows that the embedding

H 1(Γ )→ L2(Γ )

is compact.
By the same argument used in the proof of Theorem 6.8, the resolvent of −�

is bounded as a map L2(Γ ) → H 1(Γ ). Therefore, the resolvent is compact as an
operator on L2(Γ ). The structure of the spectrum follows from the Hilbert–Schmidt
theorem (Theorem 4.21). 
�

Under Neumann–Kirchoff conditions, the lowest eigenvalue for any compact
graph is λ1 = 0, corresponding to the constant functions. The multiplicity of zero
as an eigenvalue is the number of connected components of the graph.

If ψ is an eigenfunction with eigenvalue λ = κ2 for κ > 0, then on each edge the
eigenvalue equation implies that ψe is a combination of e±iκx . Eigenvalues can be
computed directly by matching these solutions at the vertices and solving a linear
system for the coefficients.

Example 8.6. Consider an equilateral star graph consisting of m ≥ 2 edges of
length �/m, meeting at a central vertex, as illustrated in Figure 8.2. The Neumann
conditions on the outer vertex require the eigenfunctions to be proportional to
cos(κx) in each edge, assuming x = 0 at the outer vertex. If the coefficient of
the j th edge is aj , then at the central vertex we have the continuity condition,

aj cos(κ�/m) is independent of j,
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Fig. 8.2 Star graph with five
edges

and the Kirchoff circuit condition

k∑
j=1

aj sin(κ�/m) = 0.

There are two families of solutions. Either

cos(κ�/m) = 0 and a1 + · · · + ak = 0,

or

sin(κ�/m) = 0 and a1 = a2 = · · · = ak.

Therefore,

σ(−�) =
{(πmj

2�

)2 : j ∈ N0

}
,

where the multiplicity is m− 1 if j is odd and 1 if j is even. ♦
Example 8.7. Let Γ be an equilateral dipole graph, as illustrated in Figure 8.3,
consisting of two vertices joined by m ≥ 2 edges of length �/m. The continuity
and vertex conditions for λ = κ2 admit solutions only when sin(κ�/m) = 0. For
each κ�/m ∈ πN, then there are k − 1 independent eigenfunctions with each edge
solution proportional to sin(κx), and 1 with edge solution cos(κx). Thus,

Fig. 8.3 Dipole (or
pumpkin) graph with six
edges
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σ(−�) =
{(πmj

�

)2 : j ∈ N0

}
, (8.14)

with multiplicity k for all nonzero eigenvalues.
Suppose instead we consider an equilateral flower graph, as illustrated in

Figure 8.4. If the flower consists of m ≥ 2 loops attached to a single vertex, then the
only difference from the dipole case is the fact that the cosine edge solutions only
occur for κ�/m ∈ 2πN, by the continuity condition. The eigenvalue set is still given
by (8.14), but the multiplicity of (πmj/�)2 is only m− 1 for j odd. ♦

The dipole graph exhibits a novel feature of quantum graphs: there exist
eigenfunctions that vanish completely on some edges. This means that unique con-
tinuation, which we proved for the Laplacian on bounded domains in Corollary 6.16,
does not hold for quantum graphs.

Fig. 8.4 Flower graph with
seven edges

8.4 Eigenvalue Comparison

Eigenvalues of a quantum graph may be characterized by the min–max principle of
Theorem 5.15. Since the self-adjoint extension of −� is derived from a quadratic
form on H 1(Γ ), we can apply the argument used in Theorem 6.18 to replace the
operator domain D(−�) by the form domain H 1(Γ ) in the min–max statement.
This yields the following:

Theorem 8.8. Let Γ be a compact quantum graph, with eigenvalues {λk} arranged
in increasing order and repeated according to multiplicity. If Λk denotes the
collection of subspaces of H 1(Γ ) of dimension k, then

λk = min
W∈Λk

{
max

u∈W\{0}
‖u′‖2

‖u‖2

}
. (8.15)

As in other cases we have considered, the min–max principle is extremely useful
for comparison estimates.
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Corollary 8.9. Suppose that Γ and Γ̃ are compact graphs, with respective eigen-
value sets {λk} and {λ̃k}, listed in increasing order and repeated according to
multiplicity. Assume that the two graphs are related in one of the following ways:

(a) Γ is obtained from Γ̃ by identifying a pair of vertices, preserving the edge
attachments.

(b) Γ̃ is obtained from Γ by splitting an edge at an interior point, introducing two
new vertices.

(c) Γ̃ is formed from Γ by attaching a new graph to a single vertex of Γ .
(d) Γ̃ is formed from Γ by lengthening an edge.

Then, for each k ∈ N,

λk ≥ λ̃k.

Proof By condition (a) there is a natural embedding of H 1(Γ ) into H 1(Γ̃ ), since
both graphs have the same edge sets and the only difference between the H 1 spaces
is that fewer continuity constraints are imposed for H 1(Γ̃ ). Since the Rayleigh
quotient is preserved under this embedding, the eigenvalue comparison follows
immediately from the fact that Γ̃k is given by minimizing over a larger collection of
subspaces.

Introducing a new vertex of degree 2 within an edge does not affect the spectrum.
Thus we can regard (b) as a special case of (a).

Now suppose that (c) holds. Let v0 denote the vertex of Γ where the new graph
Γ ′ is attached to form Γ̃ . Given a function u ∈ H 1(Γ ), we define an extension
ũ ∈ H 1(Γ̃ ) by

ũ =
{
u, on Γ,

u(v0), on Γ ′.

Because ũ′ = 0 on Γ ′, the Rayleigh quotient of ũ is bounded above by that of u.
Thus λ̃k is computed by minimizing a smaller quantity over a larger set, relative to
λk .

Condition (d) can be handled with a combination of the previous results. First
add a new vertex of degree 2 within an edge of Γ , leaving the spectrum unchanged.
Then attach a loop to this new vertex, which can only decrease the eigenvalues by
(c). Finally, split the original edge at this new vertex to form a single longer edge,
which can only decrease the eigenvalues by (a). 
�

Our first application of Corollary 8.9 gives a lower bound on the eigenvalues
depending on the total length of the graph,

�(Γ ) :=
∑
e∈E

�(e).

The following result is due to Friedlander [32].
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Theorem 8.10. If Γ is a connected compact quantum graph with total length �(Γ ),
then

λk ≥ π2k2

4�(Γ )2
. (8.16)

Proof Friedlander’s argument involves reducing the graph to a tree, using Corol-
lary 8.9(b). To avoid some technicalities, we will prove the result only for k even,
using a simpler argument inspired by Kurasov–Naboko [54].

Let Γ̃ be the graph obtained from Γ by keeping the same set of vertices and
doubling each edge. The doubled edges are assigned the original lengths. A function
u ∈ H 1(Γ ) can be lifted to a function ũ ∈ H 1(Γ̃ ) by simply copying the values of
u along repeated edges. Note ũ has the same Rayleigh quotient as u, because both
numerator and denominator are multiplied by 2. It thus follows from Theorem 8.8
that

λk ≥ λ̃k.

Note Γ̃ is a connected graph for which all vertices have even degree. By the
famous result of Euler, Γ̃ thus admits a cycle C which visits each edge once. We
can think of C as a graph with vertices of degree 2, such that Γ̃ can be formed by
identifying these vertices in pairs. Therefore, by Corollary 8.9(a),

λ̃k ≥ λk(C).

The nonzero eigenvalues of C each have multiplicity 2, so that

λk(C) =
(

2π [k/2]
�(C)

)2

.

Since �(C) = 2�(Γ ), it follows that

λk ≥
(
π [k/2]
�(Γ )

)2

.

This establishes the sharp result for k even, and a suboptimal lower bound of π2(k−
1)2/4�(Γ )2 when k is odd. 
�

Friedlander’s proof of Theorem 8.10 also shows that equality in (8.16) holds for
λ2 only if Γ is an interval, and for λk with k ≥ 3 only if Γ is a star graph with k
edges (Example 8.6).

The example of the star graph shows λ2 could be arbitrarily large for a fixed
value of �(Γ ). However, upper bounds are possible if we include other information
such as the number of edges or vertices. To illustrate this, we will derive a simple
estimate for λ2 based on comparison to the following case:
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Example 8.11. Let Γ be a flower graph with only two petals, of lengths �1 and �2.
We claim that

λ2 = 4π2

(�1 + �2)2
. (8.17)

To see this, note first that we can define an eigenfunction with the edge functions,

u1(x) = cos(κ(x − �1/2)), u2(x) = cos(κ(x + �1/2)),

where κ = 2π/(�1 + �2). This shows that λ2 ≤ κ2.
On the other hand, Γ can be constructed from a loop C of length �1 + �2 by

introducing two appropriately spaced vertices of degree 2 and then identifying them.
Corollary 8.9(a) thus implies that λ2 ≥ λ2(C) = κ2. ♦
Theorem 8.12. Suppose that Γ is a compact quantum graph with at least two
edges. If the two longest edges of Γ have lengths �1 and �2, then

λ2 ≤ 4π2

(�1 + �2)2
.

In particular, λ2 ≤ (π/�)2, where � denotes the mean edge length of Γ

Proof If we identify all of the vertices of Γ to form a flower graph, this can only
raise the eigenvalues by Corollary 8.9(a). Dropping petals from this flower can also
only raise the eigenvalues, by Corollary 8.9(c). Therefore, we have

λk ≤ λk(Γ�1,�2),

where Γ�1,�2 is the flower with two petals of lengths �1, �2. The estimate now follows
from (8.17). 
�

8.5 Eigenvalue Asymptotics

By studying the linear system for coefficients of eigenfunction components in a
compact quantum graph, we can develop the analog of a characteristic polynomial,
whose roots give the eigenvalues. The presentation in this section is based on the
more general discussion in Berkolaiko and Kuchment [11, §2.1]. Here we consider
only Neumann–Kirchoff vertex conditions for simplicity.

As we noted above, the lowest eigenvalue of a compact graph is zero, with
multiplicity equal to the number of connected components of the graph. Thus we
are only concerned with eigenvalues λ = κ2 > 0, for which the eigenfunctions are
linear combinations of e±iκx in each edge.

Let us focus first on a single vertex v, with d edges. Assume that these are
parametrized by variables x1, . . . , xd such that xj = 0 at v. In terms of these
coordinates, an eigenfunction ψ with eigenvalue κ2 takes the local form,
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ψj (xj ) = αje
iκxj + βj e−iκxj (8.18)

on the j th edge, for some complex coefficients αj and βj . We label the terms
eiκxj as “outgoing” from the vertex, while the e−iκxj solutions are “incoming.” This
distinction reflects the behavior of wavefronts of the corresponding solutions of the
wave equation.

The continuity requirement at the vertex implies that

ψ(v) = αj + βj , (8.19)

independent of j . After factoring out iκ , the Kirchoff circuit condition is

m∑
j=1

(αj − βj ) = 0. (8.20)

If Q denotes the orthogonal projection onto the span of (1, . . . , 1) in C
d , then in

terms of vectors α = (α1, . . . , αd) and β = (β1, . . . , βd), the conditions (8.19) and
(8.20) take the form

Q(α − β) = 0, (I −Q)(α + β) = 0.

Adding these equations together gives

α = (2Q− I )β. (8.21)

This is called the scattering relation for the vertex; it describes the relation between
incoming and outgoing solutions. For future reference, note that 2Q− I is a unitary
matrix, because Q is a projection. All of the matrix elements of Q are equal to 1/d,
so we can write (8.21) explicitly as

αj =
(

2

d
− 1

)
βj + 2

d

∑
i �=j

βi . (8.22)

On the full graph Γ , we must deal with the fact that the edges do not have a
preferred orientation. To account for this, we decompose each edge into a pair of
bonds, each carrying one of the possible orientations. For each bond j we assign
a coordinate xj which parametrizes the bond in the direction of its orientation,
with xj = 0 at the initial vertex. If Γ has m edges, then this gives coordinates
x1, . . . , x2m, covering each edge twice in opposite directions. In terms of these
coordinates, an eigenfunction ψ with eigenvalue κ2 > 0 can be written locally
as

ψj (xj ) = γj e
iκxj (8.23)

on the j th bond, where γj ∈ C.
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To impose the scattering relations at each vertex, we introduce some notation for
relationships between bonds:

(i) ¬j denotes the partner bond to j carrying the opposite orientation on the same
edge.

(ii) i ≺ j means that i precedes j (the initial vertex of j is the final vertex of i).

For each bond j we let �j denote the length of the corresponding edge.
The term γj e

iκxj in (8.23) is outgoing from the initial vertex of bond j . In
contrast to (8.18), the incoming solutions are parametrized with variables xi such
that xi = �i at the central vertex. Thus, in the bond notation, the formula (8.22)
translates to

γj =
(

2

dj
− 1

)
γ(¬j)eiκ�j + 2

dj

∑
i≺j,i �=¬j

γie
iκ�i , (8.24)

where dj is the degree of the initial vertex of bond j .
To simplify (8.24), we introduce the bond scattering matrix

Sji =

⎧
⎪⎪⎨
⎪⎪⎩

2/dj − 1, i = ¬j,
2/dj , i ≺ j with i �= ¬j,
0, else,

and the diagonal length matrix

Ljk := �j δjk

(which is 2m-dimensional, with each length appearing twice). Then (8.24) translates
to

γ = SeiκLγ. (8.25)

The matrix S is unitary, by the unitarity of the vertex scattering operator 2Q − I

from (8.21). Thus SeiκL is unitary as well.
Since −� has an eigenvalue at κ2 > 0 if and only if the system (8.25) has a

nontrivial solution, we immediately obtain the following:

Theorem 8.13. The eigenvalues λ = κ2 > 0 of the Neumann–Kirchoff Laplacian
are equal, with multiplicities, to the positive roots of

F(t) := det(I − SeitL) = 0.

The equation F(t) = 0 is called the secular equation for Γ . To prove that this
formula captures the correct multiplicities, we first analyze the eigenvalues of the
unitary matrix SeitL. The following lemma is an adaptation of a classical result for
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analytic families of normal matrices, specialized to the unitary case. See, e.g., Kato
[49, Thm. II.1.10] for a proof.

Lemma 8.14. LetU(t) be a family of unitary n×nmatrices depending analytically
on t ∈ R. There exists an orthonormal basis of eigenvectors {vj (t)}, with
corresponding eigenvalues {eiθj (t)}, such that the functions vj : R → C

n and
θj : R→ R are real analytic.

By Lemma 8.14, we can assume that the eigenvalues of SeitL take the form
eiθj (t), with a corresponding orthonormal basis {vj (t)} for C

2m, with θj and vj
being real analytic functions. Differentiating the equation,

SeitLvj = eiθj vj , (8.26)

with respect to t gives

SeitL
[
iLvj + v′j

]
= eiθj

[
iθ ′j vj + v′j

]
.

Taking the inner product of this equation with (8.26), and using the fact that vj ·v′j =
0, because vj is a unit vector, we obtain

θ ′j = vj · Lvj . (8.27)

Proof of Theorem 8.13 It is clear from (8.25) that κ2 is an eigenvalue if and only
if F(κ) = 0. By the definition of θj (t) given above,

F(t) =
2m∏
j=1

(
1− eiθj (t)

)
. (8.28)

The multiplicity of κ2 as an eigenvalue is the number of values of j for which
θj (κ) ∈ 2πZ. By (8.27) and the positivity of L, we have θ ′j (t) > 0 for all t . Hence
the zeros of θj (t) = 2πk are simple for each k ∈ Z. Therefore, the eigenvalue
multiplicity is equal to the degree of vanishing of F(t) at the root. 
�
Example 8.15. Consider a flower graph with two loops of lengths �1, �2, as in
Example 8.11. Assign bonds {1, 2} to the first loop, and {3, 4} to the second. Since
all bonds are connected to the central vertex of degree 4, the bond scattering matrix
has the form

S = 1

2

⎛
⎜⎜⎜⎝

1 −1 1 1

−1 1 1 1

1 1 1 −1

1 1 −1 1

⎞
⎟⎟⎟⎠ .
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The four eigenvalues of SeitL are given by eit�1 , eit�2 , and ±eit (�1+�2)/2, in
accordance with Lemma 8.14. The secular equation is thus given by

(1− eit�1)(1− eit�2)(1− eit (�1+�2)) = 0.

Reading off the positive roots gives the full spectrum,

σ(−�) = {0} ∪
(

2πN

�1

)2

∪
(

2πN

�2

)2

∪
(

2πN

�1 + �2

)2

.

♦

8.5.1 Weyl Law

In Section 6.5, we saw that the asymptotic distribution of eigenvalues of the
Dirichlet Laplacian on a bounded open set satisfies an asymptotic power law with
exponent equal to half the dimension. In this section we will establish a quantum
graph version of the Weyl law. This is a sharp version of the asymptotic

#{λ ∈ σ(−�) ≤ t} ∼ �(Γ )

π
t

1
2 ,

reflecting the fact that a quantum graph is effectively one dimensional with volume
�(Γ ).

Theorem 8.16. Let Γ be a finite quantum graph with m edges and total length
�(Γ ), with −� the Neumann–Kirchoff Laplacian. Assuming that eigenvalues are
counted with multiplicity,

#
{
κ2 ∈ σ(−�) : a ≤ κ ≤ b

} = �(Γ )

π
(b − a)+O(1),

uniformly for 0 < a < b.

Proof Let θj (t) be the phases of the eigenvalues of the unitary matrix SeitL, as
defined in the proof of Theorem 8.13. Each eigenvalue κ2, counted with multiplicity,
corresponds to a point where θj ∈ 2πZ for some particular j . Between a and b, the
number of such points for each j is approximately given by [θj (b) − θj (a)]/2π ,
with an error of at most 1. Thus,

#
{
κ2 ∈ σ(−�) : a ≤ κ ≤ b

} = 1

2π

2m∑
j=1

[
θj (b)− θj (a)

]+ R(a, b),

with |R(a, b)| ≤ 2m.
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Using the derivative formula (8.27), we can write

1

2π

2m∑
j=1

[
θj (b)− θj (a)

] = 1

2π

2m∑
j=1

∫ b

a

θ ′j (t) dt

= 1

2π

2m∑
j=1

∫ b

a

vj (t) · Lvj (t) dt,

where vj (t) is the j th eigenfunction branch. Since {vj (t)} is an orthonormal basis
of C2m for each t ,

2m∑
j=1

vj (t) · Lvj (t) = trL = 2�(Γ )

independent of t . Therefore,

1

2π

2m∑
j=1

[
θj (b)− θj (a)

] = �(Γ )

π
(b − a),

and the result follows. 
�

8.6 Exercises

8.1. Let Γ be a compact quantum graph with Laplacian −� defined using
Neumann–Kirchoff vertex conditions. Assume that Γ is equilateral, meaning that
all edges have the same length �. A variant of the combinatorial Laplacian L on Γ
is the normalized Laplacian given by

L := D−
1
2LD−

1
2 = I −D− 1

2AD−
1
2 ,

where A and D are the adjacency and degree matrices of Γ . For σ �= πZ/�, prove
that σ 2 ∈ σ(−�) if and only if 1− cos(σ�) is an eigenvalue of L.

8.2. Let Γ be a compact quantum graph with Neumann–Kirchoff Laplacian −�
and eigenvalues {λn} arranged in increasing order. Let {μn} be the eigenvalues of
the Laplacian defined by imposing Dirichlet boundary conditions at a single vertex
v0 (leaving all other vertices unchanged).

(a) Prove a min–max formula for μn.
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(b) Use the min–max formula to show that for all n, the eigenvalues satisfy

λn ≤ μn ≤ λn+1.

8.3. For a compact quantum graph Γ , let Γ0 be the corresponding graph with
Dirichlet conditions imposed at all vertices (effectively splitting the graph of a
disjoint collection of intervals). Using the result of Exercise 8.2 to compare the
eigenvalue counting functions of Γ and Γ0, provide a direct proof of the Weyl
asymptotic:

#{λ ∈ σ(Γ ) : λ ≤ t} = �(Γ )

π

√
t +O(1).

8.4. Let Γ be a flower graph with lengths �1, . . . , �m where m ≥ 2. Suppose the
Neumann–Kirchoff eigenvalues are arranged in increasing order, starting from λ1 =
0. If the total length � =∑ �j is fixed, prove that λ2 is maximized in the equilateral
case, where �j = �/m for all j .

8.5. Let Γ be a compact quantum graph with vertices V . Given a function α : V →
R, the analog of Robin boundary conditions are the vertex conditions

∑
e"v

f ′e(v) = α(v)f (v),

for all v ∈ V . Find the quadratic form on H 1(Γ ) that corresponds to these
conditions, and use it to prove that the Robin Laplacian is well defined as a self-
adjoint operator on L2(Γ ).

8.6. Suppose that Γ and Γ̃ are compact quantum graphs, and that Γ is obtained
from Γ̃ by identifying a pair of vertices, as in Corollary 8.9(a). If {λk} and {λ̃k} are
the corresponding eigenvalues in increasing order, prove that

λk ≤ λ̃k+1

for all k.

Notes

For an introduction to combinatorial graph theory, see Chung [22]. Additional
background on the spectral theory of quantum graphs may be found in Kuchment
[53], Berkolaiko and Kuchment [11], or Berkolaiko [10]. It is possible to define
spectral theory in a hybrid context where functions on a metric graph take both
discrete values at the vertices and continuous values on the edges. This setting,
which is motivated by applications in number theory, is developed in Baker and
Rumely [7].



Chapter 9
Spectral Theory on Manifolds

In previous chapters, we have studied the spectral theory of a variety of operators
based on the Laplacian on R

n. Many modern applications of spectral theory,
in differential geometry, topology, and number theory for example, involve the
Laplacian associated with a Riemannian metric. In many contexts, this geometric
version of the Laplacian admits a natural self-adjoint extension, and its spectral
theory can therefore be used to define geometric invariants.

The goal of this chapter is to lay the groundwork for the study of “spectral
geometry,” the study of the spectral theory of naturally defined geometric operators.
We will give a very basic introduction to Riemannian geometry, explain how the
Laplacian is defined, and develop some basic tools for its analysis. This discussion
is intended to be self-contained, so its scope is necessarily rather limited. The
most serious omission is the topic of curvature. Although curvature is of central
importance in spectral geometry, it requires more technical background than our
brief introduction will allow. Suggestions for further reading are given in the notes
at the end of the chapter.

9.1 Smooth Manifolds

A topological manifold is a second countable Hausdorff space which is locally
homeomorphic to R

n. For the benefit of readers who do not know this topology
background, the essential consequence of this definition is that a manifold admits
a set of local coordinate parametrizations modeled on R

n, such that the changes of
coordinates between parametrizations are smooth.

In order to avoid a lengthy digression into topological details, we will use the
equivalent but more elementary definition of Guillemin and Pollack [39], where
manifolds are defined as subsets of Euclidean space. This approach relies on the
induced topology on a subset A ⊂ R

q . In the induced topology, a subset of A is
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open if and only if it is the intersection with A of an open set in R
q . For example,

the set A itself is both closed and open in the induced topology on A.
A smooth structure is induced on A in a similar way. A function f : A→ R

n is
smooth if each point p ∈ A admits an open neighborhood U ⊂ R

q on which there
exists a smooth function f̃ : U → R

n such that the restriction of f̃ to A agrees with
f . A diffeomorphism between subsets of Rq and R

n is an invertible map which is
smooth in both directions.

Definition 9.1. A manifold of dimension n is a subset M ⊂ R
q , equipped with the

induced topology described above, which is locally diffeomorphic to R
n.

The condition “locally diffeomorphic to R
n” means that each point of M has

a neighborhood U and a diffeomorphism ψ from U to an open set V ∈ R
n.

This map ψ , called a coordinate chart, is typically written in component form as
ψ = (x1, . . . , xn). The inverse map ψ−1 defines a parametrization of U using
the coordinates (x1, . . . , xn), as illustrated in Figure 9.1. The fact that coordinate
indices are raised is part of a useful convention which we will explain below.

A set of coordinate charts covering M is called an atlas. If two coordinate
charts (ψ1, U1) and (ψ2, U2) overlap, then the change of coordinates is given by
a transition map

ψ1 ◦ ψ−1
2 : ψ2(U1 ∩ U2)→ ψ1(U1 ∩ U2),

which is a diffeomorphism.
The implicit function theorem provides a good source of examples of manifolds.

For n < q, suppose that F : Rq → R
q−n is a smooth function and that dF has

maximal rank q−n at all points in the preimage of a ∈ R
q−n. Then F−1{a} is locally

diffeomorphic to R
n, by the implicit function theorem, and is hence a manifold of

dimension n.
Smoothness of maps between manifolds can be formulated in terms of local

coordinates. A function f : M1 → M2 is smooth if and only all of its realizations in
local coordinates are smooth. Two manifolds are considered equivalent if they are
related by a global diffeomorphism.

Because each point has a neighborhood diffeomorphic to an open subset of Rn, a
manifold has no boundary points. To allow for a boundary, we modify the definition

Fig. 9.1 A coordinate chart
on a surface in R

3
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by taking the closed half-space R
n+ := {xn ≥ 0} ⊂ R

n as a model for the local
neighborhoods.

Definition 9.2. A manifold with boundary of dimension n is a closed subset Ω ⊂
R
q that is locally diffeomorphic to R

n+.

In standard usage, term “manifold” refers only to the case of Definition 9.1,
without boundary. However, the term “manifold with boundary” is inclusive, i.e.,
the boundary is allowed to be empty as a special case. This is consistent with
Definition 9.2, because the neighborhoods of Rn+ could all lie in the interior.

For a manifold with boundary Ω , the interior Ω is a manifold in the ordinary
sense. Points in the boundary ∂Ω are necessarily mapped to the hyperplane ∂Rn+ =
{xn = 0} in local coordinate patches. It follows that the restrictions of coordinate
charts to ∂Rn+ form an atlas for ∂Ω , giving the boundary the structure of a manifold
of dimension n− 1.

By definition, a smooth map into a neighborhood of Rn+ admits (locally at least)
a smooth extension to an open subset of Rn. Thus a manifold with boundary admits
a realization as a closed subset of a larger manifold without boundary.

9.1.1 Tangent and Cotangent Vectors

In vector calculus, the tangent vectors to a manifold M embedded in R
q would

be defined in terms of derivatives of parametrized curves. That is, a tangent vector
to M at the point p is the derivative γ̇ (t0) ⊂ R

q of a smooth parametrized curve
γ : (a, b)→ M , for which γ (t0) = p.

The problem with this definition is that it depends explicitly on the embedding.
To avoid this dependence, we focus on the fact that a curve also defines a directional
derivative. With M and γ as above, for f ∈ C∞(M) the derivative of f ◦ γ at t0
depends on the curve only through γ (t0) and γ̇ (t0), by the chain rule. We can thus
identify γ̇ (t0) with the directional derivative map,

f �→ d

dt
(f ◦ γ )(t0). (9.1)

This interpretation is the motivation for the following:

Definition 9.3. A tangent vector at a point p ∈ M is a linear map

v : f ∈ C∞(M) �→ v(f ) ∈ R,

with the following properties. For f, g ∈ C∞(M),

(i) v(f ) = v(g) provided f = g in some neighborhood of p (locality);
(ii) v(fg) = f (p)v(g)+ g(p)v(f ) (derivation).
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Under Definition 9.3, we can still interpret tangent vectors to curves via (9.1),
and we continue to use the notation γ̇ (t0) for such “velocity” vectors.

Directional derivatives in calculus are often decomposed as linear combinations
of partial derivatives. The analog of a partial derivative on a manifold is a derivative
with respect to local coordinates. With the components of a coordinate chart ψ :
U ⊂ M → V ⊂ R

n written as (x1, . . . , xn), we define the tangent vectors

∂jf := ∂

∂xj

(
f ◦ ψ−1),

for j = 1, . . . , n. It follows from the fact that ψ is a diffeomorphism that {∂j }|p
forms a basis for TpM when p ∈ U . The collection {∂j } is called a coordinate
frame. In Figure 9.1, we can visualize this frame as a set of tangent vectors running
parallel to the coordinate lines.

The space of tangent vectors to M at p is denoted by TpM , and the union of
tangent spaces is the tangent bundle,

TM :=
⋃
p∈M

TpM.

The coordinate frames give a natural set of coordinate patches for TM , so the
tangent bundle is also a manifold.

Notice that the indices on the frame vectors ∂j are lowered, while coordinate
indices are raised. The convention, introduced by Albert Einstein, is that pairs of
upper/lower indices on the same side of an equation are implicitly summed over:

aibi :=
n∑
i=1

aibi .

We will adopt this Einstein summation convention for the remainder of the chapter.
A vector field on M is a smooth map v : M → TM such that vp ∈ TpM for

each p ∈ M . With respect to a local coordinate frame, the vector field has the form

v = vi∂i,

for some real-valued functions vi defined on the coordinate patch. The smoothness
of the vector field is equivalent to the condition that the coefficients vi are smooth
in each coordinate patch. Since tangent vectors are identified with directional
derivatives, a vector field can be interpreted as a first-order differential operator
on C∞(M).

The vector space dual of TpM is denoted by T ∗pM , and its elements are called
cotangent vectors. The union of all of the cotangent spaces forms the cotangent
bundle
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T ∗M :=
⋃
p∈M

T ∗pM.

A natural way to obtain cotangent vectors is by differentiation of functions. Given
a smooth function f ∈ C∞(M;R), the differential dfp ∈ T ∗pM is the evaluation
map

dfp(v) := v(f ), (9.2)

for v ∈ TpM . Applying this definition to a set of local coordinate functions
(x1, . . . , xn) gives a local coordinate frame (dx1, . . . , dxn) for T ∗M . The coor-
dinate frames for TM and T ∗M are dual bases, in the sense that

dxi(∂j ) = δij , (9.3)

where δij is the usual Kronecker delta, adapted to the Einstein index convention. By

(9.3), the pairing of a cotangent vector ξ = ajdx
j with the tangent vector v = vi∂i

takes the very natural form,

ξ.v = ajv
j .

The summation convention also makes it easy to apply the chain rule by simply
matching index pairs. For example, for two sets of coordinates (x1, . . . , xn) and
(y1, . . . , yn), the coordinate frames are related by

dyj = ∂yj

∂xi
dxi, ∂yj =

∂xi

∂yj
∂xi .

The above definitions of tangent and cotangent vectors apply also to a manifold
with boundary Ω . If a boundary neighborhood is parametrized by coordinates
(x1, . . . , xn), with xn ≥ 0, then this defines a local coordinate frame {∂j } for TΩ .
At a boundary point p ∈ ∂Ω the tangent space is still isomorphic to R

n, but we can
distinguish the vectors as inward, tangent to ∂Ω , or outward, according to the sign
of the coefficient of ∂n.

9.1.2 Partition of Unity

For many of the arguments given in this chapter, we will reduce calculations to local
computations in R

n using coordinate patches. To make this work, we need a way
to piece together objects defined in local coordinates into a structure defined on the
full manifold. In this section we will describe the essential tool for this purpose, a
smooth partition of unity.



250 9 Spectral Theory on Manifolds

By the Heine–Borel property, closed and bounded subsets of Rn are compact.
This implies that a manifold M defined according to Definition 9.1 is locally
compact, meaning that each point has a neighborhood whose closure is compact.
Any open cover of M can be reduced to a locally finite cover, meaning that each
point is contained in only a finite number of sets in the cover. In particular, we can
assume that the coordinate atlas on M is locally finite.

Lemma 9.4 (Partition of Unity). Let {Uj ,ψj } be a locally finite atlas for M .
There exists a collection of functions χj ∈ C∞0 (M) such that χj has support in
Uj and

∑
j

χj = 1.

Proof For each j , the set

Fj :=
{
x ∈ Uj : x /∈ Uk for all k �= j

}

is a closed subset of Uj . We can choose a positive function hj ∈ C∞0 (M) with
support in Uj such that hj = 1 on Fj ; this guarantees that at least one hj is nonzero
at each point of M . We then set

χj (x) := hj (x)∑
j hj (x)

.

There is no convergence issue for the sum in the denominator, because only finitely
many terms are nonzero for each x. 
�

9.2 Riemannian Metrics

A Riemannian metric is a family of inner products g(·, ·) on TpM that varies
smoothly as a function of p. In a coordinate frame, the metric is represented by
a symmetric, positive matrix with elements

gij := g(∂i, ∂j ).

For example, in Cartesian coordinates, the Euclidean norm is given by the identity
matrix, gij = δij .

The condition that g is smooth means that the components gij are smooth
functions in each coordinate patch. In terms of the coordinate basis for T ∗pM , we
can use the summation convention to write

g = gij dx
i ⊗ dxj .
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The norm on TpM associated with g will be denoted by

|v|g :=
√
g(v, v)

for v ∈ TpM .
Given a Riemannian metric, we can define the speed of a curve γ : I → M as

|γ̇ |g . Assuming that I is a finite interval, the arclength is then given by the usual
formula,

�(γ ) :=
∫

I

|γ̇ |g dt. (9.4)

Let s denote the displacement along the curve, measured from a starting time t0 ∈ I ,

s(t) :=
∫ t

t0

|γ̇ |g dt ′. (9.5)

In local coordinates, this formula reduces to

s(t) :=
∫ t

t0

√
gij γ̇ i γ̇ j dt

′.

We often write this relationship between metric and length in abbreviated form as
an expression for the infinitesimal length element squared,

ds2 = gij dx
idxj . (9.6)

This gives a convenient shorthand for specifying the metric in coordinate form. For
example, the Euclidean metric in R

2 is written as ds2 = dx2 + dy2 in Cartesian
coordinates, or ds2 = dr2 + r2dθ2 in polar.

Example 9.5. The historical prototype for a Riemannian manifold is a regular
surface embedded in R

3, with metric induced by the three-dimensional dot product.
Here are a few cases of induced surface metrics:

1. For a graph z = f (x, y), we use the obvious parametrization,

σ(x, y) = (x, y, f (x, y)).

The tangent vectors ∂x and ∂y correspond to three-dimensional vectors

σx = (1, 0, fx), σy = (0, 1, fy),

respectively, where the subscripts denote partial derivatives. The components of
the induced metric are given by

g11 = σx · σx, g12 = g21 = σx · σy, g22 = σy · σy.
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In the notation (9.6) the metric would be written as

ds2 = (1+ f 2
x

)
dx2 + 2fxfy dx dy +

(
1+ f 2

y

)
dy2.

2. Consider a surface of revolution defined by z = h(r), with the polar coordinate
parametrization,

σ(r, θ) = (r cos θ, r sin θ, h(r)).

The tangent vectors ∂r and ∂θ correspond to the three-dimensional vectors

σr = (cos θ, sin θ, hr), σθ = (−r sin θ, r cos θ, 0).

Taking dot products as above gives the induced metric

ds2 = (1+ h2
r

)
dr2 + r2 dθ2.

3. The standard parametrization of the unit sphere S
2 is

σ(ϕ, θ) := (sinϕ cos θ, sinϕ sin θ, cosϕ),

where ϕ is the polar angle and θ the azimuth. Taking coordinate derivatives and
dot products gives the metric

ds2 = dϕ2 + sin2 ϕ dθ2.

♦
The definition (9.4) of arclength determines a metric structure on M , with

distance function

dist(p, q) := inf
{
�(γ ) : γ ∈ C∞([0, 1],M), γ (0) = p, γ (1) = q

}
. (9.7)

We will see below that the metric topology generated by dist(·, ·) is compatible with
the preexisting manifold topology on M . By (9.6), we can interpret the Riemannian
metric as the infinitesimal form of the distance function dist(·, ·).

To define Riemannian metrics on manifolds with boundary, we impose the
smoothness requirement up to the boundary, meaning that the matrix elements
gij admit local smooth extensions across the boundary. Under this definition, a
Riemannian manifold with boundary can be realized as a closed subset (with smooth
boundary) within an ordinary Riemannian manifold.

The restriction of g to vectors which are tangent to the boundary defines a metric
h on ∂M . In local coordinates, (with the boundary given by {xn = 0}) this boundary
metric is simply given by

hij = gij
∣∣
xn=0,

for i, j ∈ {1, . . . , n− 1}.
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9.2.1 Geodesics and the Exponential Map

To understand the distance structure defined in (9.7), it is helpful to work out the
necessary local conditions for a path to minimize distance. For this purpose we
use the Euler–Lagrange equations for a critical point of the length functional such
as �(·). These variational equations can be worked out explicitly by considering
families of perturbations of a curve γ . It is possible (and generally preferable) to do
this in a coordinate-free way, through the introduction of connections and covariant
derivatives. However, since we will not need such technology elsewhere in this
chapter, we will simplify the discussion by developing the variational equations in
local coordinates.

Suppose γ : [0, b] → M is a smooth curve contained in a single coordinate
patch, with components (γ 1, . . . , γ n) We will assume that γ is parametrized at
constant speed c, which by (9.6) means that

gij γ̇
i γ̇ j = c2. (9.8)

Consider a variation of γ defined as

γ
j
h := γ j + hηj ,

where each ηj is a smooth function [0, b] → R with ηj (0) = ηj (b) = 0, and h ∈ R

is sufficiently small, so that γh stays within the patch. The length of this perturbed
curve is

�(γh) =
∫ b

0

√
gij γ̇

i
hγ̇

j
h dt.

The assumption that �(γ ) is minimal implies in particular that h = 0 is a critical
point of h �→ �(γh). Thus gives the variational equation,

d

dh
�(γh)

∣∣∣
h=0

= 0, (9.9)

for all η.
To compute the derivative in (9.9), we must keep in mind that the coefficients gij

appearing in the integrand also vary along γh, so that

d

dh
gij

∣∣∣
h=0

= (∂kgij )η
k.

Under the constant speed assumption (9.8), we thus calculate

d

dh
�(γh)

∣∣∣
h=0

= 1

c

∫ b

0

[
gij γ̇

i η̇j + 1

2
(∂kgij )η

kγ̇ i γ̇ j
]
dt
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Applying integration by parts to the η̇ term then gives

d

dh
�(γh)

∣∣∣
h=0

= 1

c

∫ b

0

[
− d

dt

(
gikγ̇

i
)
+ 1

2
(∂kgij )γ̇

i γ̇ j
]
ηk dt,

since η vanishes at the endpoints. It is now clear that (9.9) will be satisfied if and
only if

d

dt
(gikγ̇

i) = 1

2

(
∂kgij

)
γ̇ i γ̇ j . (9.10)

To write (9.10) in a more standard form, we take the derivative on the left and
multiply by the inverse matrix gil . This yields the geodesic equation,

γ̈ i + Γ i
jkγ̇

j γ̇ k = 0, (9.11)

where Γ i
jk is the Christoffel symbol

Γ i
jk :=

1

2
gil
[
∂jglk + ∂kglj − ∂lgjk

]
. (9.12)

It is straightforward to check that any solution of (9.11) satisfies the speed equation
(9.8) for some constant c.

Since the length functional does not depend on the choice of coordinates,
it follows that the geodesic equation is invariant under changes of coordinates.
(The left-hand side of (9.11) is the coordinate representation of the “covariant
acceleration” vector.)

Definition 9.6. A geodesic on a Riemannian manifold is a curve which satisfies
(9.11) in each local coordinate patch.

Example 9.7. Consider the sphere S
2, parametrized as in Example 9.5 with the

spherical coordinates ordered as (ϕ, θ). The only component of the metric that has
a nonzero derivative is

∂1g22 = 2 sinϕ cosϕ.

Therefore

Γ 1
22 = − sinϕ cosϕ, Γ 2

12 = Γ 2
21 = cotϕ,

and all other components are zero. The geodesic equations (9.11) for a curve γ (t) =
(ϕ(t), θ(t)) reduce to

ϕ̈ = θ̇2 sinϕ cosϕ, θ̈ = −2ϕ̇θ̇ cotϕ.



9.2 Riemannian Metrics 255

An obvious family of solutions is given by taking θ = θ0 (constant) and ϕ̈ = 0. This
yields a meridian at longitude θ0. The equator ϕ = π/2 is the only other case that
has a simple expression in this coordinate system, but the symmetry of the sphere
implies that all other solutions are also “great circle” routes. ♦

To establish the existence of solutions to the geodesic equation, let us consider
vi := γ̇ i and γ i as dependent variables, so that we can write (9.11) as a first-order
system in 2n variables,

d

dt

{
γ i

vi

}
=
{

vi

Γ i
jkv

j vk

}
. (9.13)

The classical existence and uniqueness result for first-order systems is the Picard–
Lindelöf theorem (also called Cauchy–Lipschitz). It can be proven as an application
the contraction mapping principle, under a range of regularity assumptions. For our
purposes, the relevant version is the following, adapted from Lee [58, Thm 7.9]:

Theorem 9.8 (Picard–Lindelöf). Let U be a domain in R
n, and f : U → R

n a
smooth map. Given q0 ∈ U , choose r0 so that B(q0; 2r0) ⊂ U . Then there exists
δ > 0, depending only on r0 and the C1 norm of the restriction of f to B(q0; 2r0),
such that for each q ∈ B(q0, r0), the system of ODE

dy

dt
= f (y), y(0) = q, (9.14)

has a unique solution yq(t) for |t | < δ. The function (t, q) �→ yq(t) is smooth on
(−δ, δ)× B(q0, r0).

The geodesic system (9.13) is of the form (9.14), with

f (xi, vi) = (vi, Γ i
jkv

j vk).

The functions Γ i
jk are smooth, so f is clearly bounded with respect to the C1 norm

for x contained within a coordinate neighborhood and |v|g bounded. The existence
and uniqueness result of Theorem 9.8 thus yields the following:

Corollary 9.9. Given a point p ∈ M , there exists a neighborhood U ⊂ TpM ,
containing 0, and δ > 0 such that for each v ∈ U there is a unique geodesic
γv : (−δ, δ)→ M with

γv(0) = p, γ̇v(0) = v.

The solutions provided by Corollary 9.9 satisfy a useful homogeneity property
with regard to the velocity. To see this, suppose that γv is a geodesic defined for
|t | < δ. For α > 0 the rescaled curve t �→ γv(αt) is also a solution of the geodesic
equations. By the chain rule,

d

dt
γv(αt)

∣∣
t=0 = αv.
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Fig. 9.2 A tangent vector
and its image under the
exponential map

M

TpM p
v

γv

expp(v)

Therefore, by uniqueness of solutions, γαv exists for |t | < δ/α and satisfies

γαv(t) = γv(αt). (9.15)

From (9.15), we can see that there exists a sufficiently small neighborhood U ⊂
TpM in Corollary 9.9 such that γv(t) exists for all 0 ≤ t ≤ 1 and v ∈ U . On such a
neighborhood, we define the exponential map expp : U → M by

expp(v) := γv(1), (9.16)

as illustrated in Figure 9.2.
The smooth dependence on initial data from Theorem 9.8 implies that expp is

smooth.
From the exponential map we can derive a very useful set of local coordinates on

M . For this purpose, we need first to establish local invertibility.

Lemma 9.10. For each p ∈ M , there is a neighborhood Up ⊂ TpM , containing
zero, such that the restriction of expp to Up is a diffeomorphism onto its image in
M .

Proof Let us compute the differential of expp at 0. Since TpM is a vector space,
we can naturally identify T0(TpM) with TpM . Under this identification, we can use
(9.15) to compute

d(expp)0w :=
d

dt
expp(tw)

∣∣
t=0

= d

dt
γtw(1)

∣∣
t=0

= d

dt
γw(t)

∣∣
t=0

= w.
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Thus, as a map TpM → TpM ,

d(expp)0 = I. (9.17)

Since d(expp)0 is nonsingular, the inverse function theorem implies that the
restriction of expp to some neighborhood of 0 is a diffeomorphism. 
�

To obtain coordinates from the exponential map, we fix an orthonormal basis
{ei} for TpM and parametrize the neighborhood Up produced in Lemma 9.10 by
identifying (x1, . . . , xn) ∈ R

n with xiei ∈ TpM . Composing this with expp yields
a geodesic normal coordinate patch

ψ(x1, . . . , xn) := expp(x
iei). (9.18)

An example is shown in Figure 9.3.
Within a geodesic normal patch, we define the radial coordinate,

r :=
√
(x1)2 + · · · + (xn)2. (9.19)

The maximal value of r at the point p is called the injectivity radius,

inj(p) := sup
{
r0 > 0 : expp is a diffeomorphism for r < r0

}
. (9.20)

For example, the unit sphere pictured in Figure 9.3 has injectivity radius equal to π
at every point.

One of the key features of geodesic normal coordinates is the fact that the metric
approximates the Euclidean model as closely as possible at the base point.

Lemma 9.11. In geodesic normal coordinates (x1, . . . , xn), the partial derivatives
∂kgij and Christoffel symbols Γ k

ij vanish at x = 0, and the metric satisfies

gij = δij +O(|x|2). (9.21)

Fig. 9.3 A geodesic normal
coordinate patch centered at
the north pole of a sphere
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Proof By (9.18) and (9.17),

∂j |x=0 = ej .

Since {ej } is orthonormal, this implies that

gij |x=0 = δij .

For v = vj ej ∈ Up, consider the geodesic γv(t). In normal coordinates, this is a
radial path of the form

γv(t) = (v1t, . . . , vnt). (9.22)

The local geodesic equation (9.11) thus implies that

Γ i
jk

∣∣
γv(t)

vj vk = 0,

for i = 1, . . . , n. This condition applies at x = 0 for all choices of v, implying that

Γ i
jk

∣∣
x=0 = 0.

It follows that the partial derivatives also vanish at x = 0, since

∂igjk = gjlΓ
l
ik + gklΓ l

ij .


�
By the definition (9.16) of the exponential map, the geodesic radial coordinate r

of a point q corresponds to the length of the radial geodesic from p (the base point)
to q. We will show below that the radial path is in fact the shortest route from p

to q. First, we need to establish a fundamental property of radial paths. A geodesic
sphere is defined as a set of the form {r = a} within a geodesic normal patch, i.e.,
for a less than the injectivity radius.

Lemma 9.12 (Gauss). For p ∈ M , let ψ : Up → M be a geodesic normal
coordinate patch centered at p. If r denotes the radial coordinate (9.19) then ∂r
is the outward unit normal to the geodesic sphere {r = a} for each 0 < a < inj(p).

Proof Suppose that q is a point on the sphere {r = a}. This means that q =
expp(av) for some unit vector v ∈ R

n. By a change of basis, we can assume that
v corresponds to the first basis vector e1 used to define the coordinate system. This
means that q = (a, 0, . . . , 0) in coordinate form, and ∂r = ∂1 at q. This is the
velocity vector of the coordinate curve γe1(t) = (t, 0, . . . , 0), so ∂r is a unit vector
because |e1|g = 1.

The set of tangent vectors to {r = a} at q is spanned by the coordinate vectors ∂j
with j = 2, . . . , n. Thus, to prove that ∂r is normal to {r = a}, it suffices to show
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that g1j |q = 0 for j ≥ 2. From the fact that γe1(t) satisfies the geodesic equation,
as written in the form (9.10), we can deduce that

d

dt
g1j = 1

2
∂jg11.

Since g11 = ‖γ̇e1‖2 = 1, this shows that ∂1g1j = 0 along γe1 . By Lemma 9.11,
g1j = 0 at x = 0 for j ≥ 2. Hence g1j |q = 0. 
�

Suppose we switch from geodesic normal to the corresponding polar coordinates,
by setting x = rω with ω ∈ S

n−1. Lemma 9.12 implies that the metric decomposes
as

g = dr2 + h, (9.23)

where h = h(r) denotes a family of metrics on S
n−1, depending on r . This

coordinate system is valid within the geodesic normal patch, and in particular for
r < inj(p).

Example 9.13. Let p be the north pole on the unit sphere S
2. The geodesics

originating from p are the meridians, indexed by the azimuthal angle θ . In the case
the geodesic polar coordinates are given by

(r, θ) �→ (sin r cos θ, sin r sin θ, cos r),

i.e., standard spherical coordinates. (Here r denotes the distance from the north pole,
and not the distance from the origin as in the usual spherical coordinates.) The form
of the metric was worked out in Example 9.5,

ds2 = dr2 + sin2 r dθ2. (9.24)

In this case h is a family of metrics on the circle given by h(r) = sin2 r dθ2. By
symmetry, geodesic normal coordinates centered at any point of the sphere have the
form (9.24). ♦
Example 9.14. The Poincaré disk B is a manifold based on the unit disk in R

2,
equipped with the hyperbolic metric. In polar coordinates (ρ, θ) on B, this has the
form

ds2 := 4

(1− ρ2)2

(
dρ2 + ρ2 dθ2). (9.25)

Since the metric is invariant under rotation, we would expect geodesics starting at
the origin to be radial.

To verify this, first note that a radial curve t �→ (ρ(t), θ0) has unit speed if

2ρ̇

1− ρ2 = 1.
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The unique solution with ρ(0) = 0 is ρ(t) = tanh(t/2). The radial coordinate r is
thus related to ρ by

ρ = tanh(r/2).

Substituting this into (9.25) gives

ds2 = dr2 + sinh2 r dθ2. (9.26)

In the (r, θ) coordinates, we have Γ 1
11 = Γ 2

11 = 0. It follows that radial curves
satisfy the geodesic equation (9.11).

If B is identified with the unit disk in C, then the Möbius transformations that
map B to itself are isometries of the hyperbolic metric. This group of symmetries
implies that the hyperbolic metric has the local form (9.26) at any point. ♦

We are now finally prepared for the main result of this section, which says that
sufficiently short geodesics are length-minimizing curves.

Theorem 9.15. For p ∈ M and v ∈ TpM such that |v|g < inj(p), the radial
geodesic from p to q := expp(v) is length-minimizing. Conversely, the minimal
length curves originating from p are radial within the geodesic polar neighborhood.

Proof Suppose that |v|g = a, so that the radial geodesic γv(t) connecting p to q
has length a. Let γ : [0, 1] → Up be another curve connecting p to q. If the image
of γ lies within the region {r < inj(p)}, then the curve can be written in polar
coordinates as γ (t) = (r(t), ω(t)). By (9.23),

|γ̇ |2g = ṙ2 + h(ω̇, ω̇)
≥ ṙ2.

Thus,

�(γ ) =
∫ 1

0
|ṙ| dt

≥
∫ 1

0
ṙ dt

= a.

On the other hand, if γ passes into the region {r > a} (and possibly out of
the geodesic polar neighborhood), then the same argument shows that �(γ ) >

a. Therefore, the radial path has the shortest length among all possible curves
connecting p to q, and hence dist(p, q) = a. 
�
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9.2.2 Completeness

Theorem 9.15 shows that if r is the radial coordinate defined within a geodesic
normal patch centered at p, then dist(p, ·) = r for r < inj(p). This implies in
particular that metric balls B(p, r) are open in the topology of M , and that each
open neighborhood of p contains arbitrarily small metric balls. Thus, the metric
topology on M defined by (9.7) is therefore compatible with the original manifold
topology.

We say that a Riemannian manifold M is complete if it is complete as a metric
space. Complete manifolds with boundary are defined by the same condition.

There is an alternative formulation of completeness in terms of geodesics. A
Riemannian manifold is geodesically complete if all geodesics are defined for all t ∈
R. The link between these notions is a fundamental result in Riemannian geometry.

Theorem 9.16 (Hopf–Rinow). For a Riemannian manifold M , the following are
equivalent:

(a) M is complete.
(b) M is geodesically complete.
(c) At some p ∈ M , expp is defined on all of TpM .
(d) Closed and bounded subsets of M are compact (the Heine–Borel property).

The proof is slightly too technical for us to include here, but is covered in all
standard differential geometry texts. See, e.g., Petersen [66, §5.7.1] for a version that
includes the Heine–Borel property, which is sometimes omitted from the statement.
The Heine–Borel criterion for completeness can be easily extended to the case of
a manifold with boundary. Properties (b) and (c) obviously do not hold unless the
boundary is empty.

Example 9.17. For the Poincaré disk B introduced in Example 9.14, we saw that
unit speed geodesics starting at ρ = 0 have the form ρ(t) = tanh(t/2), θ(t) = θ0.
Since this solution exists for all t ∈ [0,∞), the exponential map at the origin
is defined for all tangent vectors. Therefore, B is complete by property (c) of
Theorem 9.16.

Using the Möbius symmetry, and the fact that

|z| = tanh(dist(0, z)/2),

we can derive an explicit formula for the distance function for the Poincaré metric,

dist(w, z) = log

[
|w − z| +√|w|2|z|2 − 2w · z+ 1√

(1− |w|)2(1− |w|2)

]
.

From this expression, it is possible to verify directly that B is complete as a metric
space. ♦
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In addition to Hopf–Rinow, we need to cite one more technical result without
proof. Many of the arguments in later sections will make use of geodesic coor-
dinates, and it will be necessary to have some control over the size of normal
neighborhoods.

Lemma 9.18. For a complete Riemannian manifold M , the injectivity radius inj :
M → R+ is continuous. In particular, on a compact set the injectivity is bounded
below by a positive constant.

The proof is not difficult, but it does require some additional machinery. For
details see Klingenberg [52, Prop. 2.1.10].

9.3 The Laplacian

In R
n the Laplacian operator can be defined as the divergence of the gradient of

a function. To make a corresponding definition on a Riemannian manifold M , we
need to develop the notions of gradient and volume density.

For a function f ∈ C∞(M), the differential df : M → T ∗M is defined by (9.2),
independently of the metric. In local coordinates,

df = ∂jf dx
j .

The metric g provides a natural identification of T ∗pM with TpM , allowing us to
define a corresponding gradient map ∇f : M → TM , such that

g(∇f (p), v) = dfp(v) = v(f ), (9.27)

for v ∈ TpM .
In terms of the local coordinate frame, we can expand ∇f = (∇f )j ∂j . Setting

v = ∂k in (9.27) then gives

gkj (∇f )j = ∂kf. (9.28)

By convention, the inverse matrix to gij is written with upper indices, so that

gikgkj = δij .

Applying gik to (9.28) yields the local coordinate formula for the gradient,

∇f = gjk∂kf ∂j .

Similarly, the inner product of the gradients of two functions is given locally by

g(∇u,∇v) = gij ∂iu ∂j v.
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Example 9.19. In polar coordinates (r, θ) for R
2, ds2 = dr2 + r2 dθ2. The

differential of a function f (r, θ) is

df = fr dr + fθ dθ.

Since g11 = 1, g12 = g21 = 0, and g22 = r−2, the gradient is

∇f = fr ∂r + r−2fθ ∂θ .

♦
The second ingredient that we need to define the Laplacian is volume density

associated with a Riemannian metric. Under a change of local coordinates from
(x1, . . . , xn) to (y1, . . . , yn), the Jacobian formula gives

dy1 . . . dyn =
∣∣∣∣det

[
∂yi

∂xj

]∣∣∣∣ dx1 . . . dxn. (9.29)

If gij and g̃kl represent the metric in the x and y coordinates, respectively, the chain
rule gives the relation

g̃kl = gij
∂xi

∂yk

∂xj

∂yl
. (9.30)

We can thus define the density factor,

√
g := √det[gij ],

so that (9.30) gives

√
g̃ =

∣∣∣∣det

[
∂xi

∂yk

]∣∣∣∣
√
g.

Then, by (9.29), the volume density defined locally by

dV := √g dx1 . . . dxn (9.31)

is invariant under changes of coordinates.
The global integral of a compactly supported function f ∈ C(M),

f �→
∫

M

f dV,

is defined by using a partition of unity to subdivide into integrals over local
coordinate patches. By the standard measure theory construction, the integral



264 9 Spectral Theory on Manifolds

defined for continuous functions with compact support can be extended to a unique
Borel measure on M , which is also denoted by dV .

The simplest way to define the Laplacian is through an analog of Green’s identity:
the operator � on C∞(M) should satisfy

∫

M

g(∇u,∇v) dV = −
∫

M

u�v dV. (9.32)

for all u, v ∈ C∞0 (M). If u, v are supported within a local coordinate patch U , this
becomes

∫

U

gij ∂iu ∂j v
√
g dnx = −

∫

U

u�v
√
g dnx.

Thus, by integration by parts, the local coordinate expression for the Laplacian is

� := 1√
g
∂i
(√
ggij ∂j

)
. (9.33)

This generalization of the Laplacian to Riemannian manifolds was introduced by
Eugenio Beltrami and is also called the Laplace–Beltrami operator. In the geometric
context, a minus is often included on the right-hand side of (9.33) as part of the
definition.

Example 9.20. Consider the unit sphere S
2 ⊂ R

3. In Example 9.5 we worked out
the metric in spherical coordinates

ds2 = dϕ2 + sin2 ϕ dθ2.

Thus
√
g = sinϕ, and (9.33) becomes

� := 1

sinϕ
∂ϕ
(
sinϕ ∂ϕ

)+ 1

sin2 ϕ
∂2
θ .

Note that this spherical Laplacian appeared in (7.44) in the context of separation of
variables in R

3. ♦

9.3.1 Green’s Identity

The local definition (9.33) of the Laplacian was inspired by Green’s identity in form
(9.32). Let us now adapt the identity to the case of a Riemannian manifold with
boundary.
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Theorem 9.21 (Green’s Identity). Let Ω be a compact manifold with boundary.
For u, v ∈ C∞(Ω),

∫

Ω

[
g(∇u,∇v)+ u�v

]
dV =

∫

∂Ω

u ∂νv dS,

where ∂ν is the outward unit normal tangent vector to ∂Ω .

Proof By the assumption that Ω is compact, we can choose a finite atlas of
coordinate charts {Uj }mj=1. Let {χj } be a corresponding partition of unity as given
by Lemma 9.4. By linearity, the identity can then be decomposed as

m∑
i,j=1

∫

Ω

[
g
(∇(χiu),∇(χj v)

)+ (χiu)�(χjv)
]
dV

=
m∑

i,j=1

∫

∂Ω

(χiu) ∂ν(χjv) dS.

It therefore suffices to prove the result for functions which are compactly
supported within a single coordinate neighborhood. Without loss of generality, we
can take this to be a boundary neighborhood, so we will consider a metric g defined
on an open set W ⊂ R

n+, with h the induced metric on ∂Rn+ = {xn = 0}.
Note that the determinant of hij is the (n, n) determinant minor of gij . Therefore,

by the cofactor formula for the inverse matrix,

det[hij ] = gnn det[gij ].

The determinant factors appearing in the measures dV and dS are thus related by

√
g = (gnn)− 1

2
√
h (9.34)

For two functions u, v ∈ C∞0 (W), consider the integral

∫

W

g(∇u,∇v) dV =
∫

W

gij ∂iu ∂j v
√
g dnx.

Applying integration by parts to the derivatives of u gives

∫

W

gij ∂iu ∂j v
√
g dnx = −

∫

W

u ∂i
[
gij
√
g ∂jv

]
dnx

−
∫

{xn=0}
ugnj ∂j v

√
g dn−1x

(9.35)
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We claim that the outward unit normal to {xn = 0} is given by

∂ν = −
(
gnn
)− 1

2 gnj ∂j . (9.36)

To check this, note that the tangent space to {xn = 0} is the span of ∂i for i =
1, . . . , n − 1. Therefore, to show that ∂ν is normal to the boundary, it suffices to
observe that

gnjgji = 0.

for i �= n, because gij is the inverse matrix to gij . We check that ∂ν is a unit vector
by noting that

gnigij g
nj = gnn.

Finally, since gnn > 0, the xn component of ∂ν is negative, as required for an
outward normal to {xn ≥ 0}.

By (9.36) and (9.34) we have

−
∫

{xn=0}
ugnj ∂j v

√
g dn−1x =

∫

{xn=0}
u ∂νv

(
gnn
) 1

2
√
g dn−1x

=
∫

{xn=0}
u ∂νv dS.

Applying this to (9.35), along with the local formula (9.33) for the Laplacian, gives
the desired formula,

∫

W

[
g(∇u,∇v)+ u�v

]
dV =

∫

{xn=0}
u ∂νv dS.


�

9.4 Spectrum of a Compact Manifold

The spectral theory of compact Riemannian manifolds, with or without boundary,
has many parallels to the theory developed for bounded open sets in R

n in Chapter 6.
In this section we will show that the Dirichlet Laplacian on a compact manifold with
boundary has discrete spectrum with eigenvalues accumulating at infinity.

Example 9.22. Let Γ denote a lattice in R
n, i.e., a group generated by a linearly

independent set of translation vectors {vn, . . . , vn} ⊂ R
n. The quotient XΓ :=
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R
n/Γ is a compact manifold whose functions can be identified with functions on

R
n which are periodic under Γ . The torus Tn introduced in Example 2.32 is a special

case.
The eigenfunctions of the Laplacian on XΓ can easily be written down in terms

of the dual lattice. Define

Γ ∗ := {w ∈ R
n : w · v ∈ 2πZ for all v ∈ Γ }.

For k ∈ Γ ∗, the function x �→ eik·x is then periodic with respect to Γ . As in the
case of Tn, we can use the Stone–Weierstrass theorem to argue that such functions
are dense. This yields

σ(−�XΓ ) =
{|k|2 : k ∈ Γ ∗}.

♦
Example 9.23. For the unit sphere S

2 ⊂ R
3 the Laplacian −�S2 appeared

in Example 9.20. In spherical coordinates, the eigenfunctions are the spherical
harmonics Yml (ϕ, θ) that appeared in the proof of Theorem 7.17,

Yml (ϕ, θ) := cml e
imθPml (cosϕ)

for l ∈ N0 and m ∈ {−l, . . . , l}, where Pml is the Legendre function. A sample
eigenfunction is shown in Figure 9.4. The spectrum is

σ(−�S2) = {l(l + 1) : l ∈ N0,multiplicity = 2l + 1
}
.

♦

Fig. 9.4 A contour plot of
the spherical harmonic Y 15

11
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9.4.1 Dirichlet Eigenvalues

Let M be a Riemannian manifold, and Ω ⊂ M a relatively compact open set. As
noted in Section 9.2, a general compact manifold with boundary can be realized in
this way (with ∂Ω smooth). For the construction of the Dirichlet Laplacian we do
not require any regularity of ∂Ω .

As a differential operator, the Laplacian on Ω is defined as in Section 9.3. We
will consider the action of −� on L2(Ω), the Hilbert space defined with respect to
the volume measure dV induced by the metric. By Green’s identity (Theorem 9.21),
−� is a positive symmetric operator on C∞0 (Ω).

To define the Dirichlet extension of−� on Ω , we need to set up the H 1 Sobolev
spaces. The space H 1(Ω) is defined as the set of functions f ∈ L2(Ω) such that
the restriction of f to each coordinate patch lies in H 1(Rn+) when written in local
coordinates. Lemma 6.13 shows that this definition is independent of the choice of
coordinate patches.

For u ∈ H 1(Ω), the gradient ∇u is defined in the weak sense, by the local
coordinate expressions gij ∂iu ∂j . We can thus define the inner product

〈u, v〉H 1 := 〈u, v〉 +
∫

Ω

g(∇u,∇v) dV . (9.37)

The argument from Theorem 2.25 shows that H 1(Ω) is a Hilbert space with respect
to this inner product.

As in Section 6.1.1, the subspace H 1
0 (Ω) is defined as the closure of C∞0 (Ω) in

H 1(Ω). Using Green’s identity and approximation by functions in C∞0 (Ω) as in the
derivation of (6.13), we can show that

〈u,ψ〉H 1 = 〈u,−�ψ〉 + 〈u,ψ〉

for u ∈ H 1
0 (Ω) and ψ ∈ C∞0 (Ω). Repeating the steps in the proof of Theorem 6.6

yields the construction of the Dirichlet Laplacian on Ω:

Theorem 9.24. Let Ω be a relatively compact, open subset of a Riemannian
manifold. The Laplacian −� is positive and self-adjoint on the domain

D(−�) := {u ∈ H 1
0 (Ω) : �u ∈ L2(Ω)

}
,

where �u is defined in the weak sense. This is the unique self-adjoint extension of
−� on C∞0 (Ω) for which the domain is contained in H 1

0 (Ω).

In the case of a compact manifold M without boundary, Theorem 9.24 implies
that the Laplacian is essentially self-adjoint on C∞(M). The arguments for compact
resolvent when Ω is compact can also be adapted from the Euclidean case.
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Theorem 9.25. ForΩ a relatively compact, open subset of a Riemannian manifold,
the Dirichlet Laplacian has compact resolvent and there exists an orthonormal
basis for L2(Ω) consisting of real-valued eigenfunctions ψk ⊂ H 1

0 (Ω). The
corresponding eigenvalues {λk} are nonnegative and satisfy lim λk = +∞.

Proof The argument is based on a straightforward generalization of Rellich’s
theorem (Theorem 6.9). Since Ω is compact, there exists a finite coordinate atlas
{Uj ,ψj }mj=1. Let {χj } be a corresponding partition of unity. Suppose that {wk}
is a bounded sequence in H 1

0 (Ω). Then {χjwk} is bounded in H 1
0 (Uj ), and by

applying Theorem 6.9 in each patch, we can pass to a subsequence such that
χjwk → fj ∈ L2(Uj ) for each j . It then follows that wk → ∑m

j=1 fj in L2(Ω).
This proves that, for a compact manifold with boundary, the inclusion

ι : H 1
0 (Ω)→ L2(Ω) (9.38)

is compact. As in the proof of Theorem 6.8, it follows that (−�+1)−1 is compact as
an operator on L2. The characterization of the spectrum follows from Theorem 4.21
(Hilbert–Schmidt). 
�

For a compact manifold without boundary, the lowest eigenvalue is λ0 = 0,
corresponding to the constant eigenfunction. If ∂Ω �= ∅, then the Dirichlet
eigenvalues are strictly positive.

9.4.2 Regularity

For this subsection, we assume that Ω is a compact manifold with boundary, so
that ∂Ω is smooth. The Sobolev spaces Hm(Ω) are defined for m ≥ 2 as the set
of functions in L2(Ω) for which the restriction to each coordinate patch lies in
Hm(Ω), just as for m = 1. It is possible to define an inner product on Hm(Ω) that
depends only on the metric, using covariant derivatives. However, a local-coordinate
construction is sufficient for the purpose of regularity arguments.

Let {Uj ,ψj )}qj=1 be a finite coordinate atlas forΩ , with {χj }lj=1 a corresponding
partition of unity as provided by Lemma 9.4. For u, v ∈ Hm(Ω), we define

〈u, v〉Hm :=
q∑
j=1

〈χju, χjv〉Hm(Uj )
, (9.39)

where each Uj is identified with the corresponding subset of Rn+, via the coordinate
map, and Hm(Uj ) is defined as in Section 2.5. The corresponding norms are
given by

‖u‖2
Hm :=

q∑
j=1

‖χju‖2
Hm(Uj )

.
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Although the inner product and norm are dependent on the atlas and partition of
unity, it is straightforward to check, using Lemma 6.13, that the resulting topology
is independent of these choices.

We can deduce the local regularity of Hm functions on a manifold using Sobolev
embedding (Theorem 2.26). Furthermore, Lemma 6.14 allows us to extend these
results across a smooth boundary, yielding the following:

Theorem 9.26 (Sobolev Embedding). Suppose Ω is a compact Riemannian man-
ifold with boundary. For m > k + n/2, Hm(Ω) ⊂ Ck(Ω) for m > k + n/2.

To establish the smoothness of eigenfunctions, we need a basic elliptic regularity
result. For a solution of −�u = f , this relates the Sobolev regularity of u to that of
f .

Theorem 9.27 (Elliptic Regularity). Let Ω be a compact Riemannian manifold
with boundary, with −� be the Dirichlet Laplacian defined in Section 9.3. If u ∈
D(�) and �u ∈ Hm(Ω) for some m ∈ N0, then u ∈ Hm+2(Ω), with

‖u‖Hm+2 ≤ C
(‖�u‖Hm + ‖u‖),

where C depends only on Ω and m.

For operators on R
n, Theorem 9.27 is a standard fact from PDE theory. Elliptic

regularity is easily extended to manifolds, since the regularity issues are local. The
details are somewhat technical, however, so we defer the proof to the Appendix A.4.

Corollary 9.28. If ψ is an eigenfunction of the Dirichlet Laplacian on a compact
manifold with boundary Ω , then ψ ∈ C∞(Ω).
Proof Suppose that ψ ∈ D(L) with −�ψ = λψ for some λ > 0. This implies
that λψ ∈ H 1

0 (Ω), so Theorem 9.27 immediately gives ψ ∈ H 3(Ω). Then �ψ ∈
H 3(Ω), which implies ψ ∈ H 5(Ω), etc. By induction, ψ ∈ Hm(Ω) for all m.
Therefore, ψ ∈ C∞(Ω) by Theorem 9.26. 
�

In the case of a relatively compact subsetΩ ⊂ M , with no regularity assumptions
on ∂Ω , we can apply the same arguments in the interior using cutoffs. This gives
the interior regularity ψ ∈ C∞(Ω) for an eigenfunction ψ in the general case.

9.5 Heat Equation

The Laplacian appears in the spatial component of the fundamental evolution
equations, such as the heat and wave equations. We can thus naturally adapt these
equations to manifolds simply by replacing the Euclidean version of the Laplacian
with its Riemannian generalization (9.33). Analyzing such equations helps us to
understand the interplay between geometry and physics. Furthermore, the physical
evolution equations provide valuable tools for establishing the link between the
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spectrum of the Laplacian and other geometric properties such as volume and
curvature.

In this section, we will focus on the heat equation,

∂tu−�u = 0, (9.40)

on a compact Riemannian manifold M . As an application of our analysis of the heat
kernel, we will derive the Weyl asymptotic formula for the eigenvalues.

Under the initial condition u|t=0 = f , (9.40) has the formal solution

u = et�f. (9.41)

Since −� is self-adjoint and positive, by Theorem 9.24, the heat operator et� is
defined as a bounded operator on L2(M) for t > 0, by the functional calculus. The
right-hand side of (9.41) is thus well defined, and we need to only check that it
yields a solution.

Theorem 9.29. Let M be a compact Riemannian manifold. For f ∈ L2(M), define
u(t, ·) := et�f for t > 0. Then

(a) u ∈ C∞(R+ ×M),
(b) u satisfies (9.40),
(c) u(t, ·)→ f in the L2 sense as t → 0+.

Moreover, a solution with u(t, ·) ∈ L2(M) is uniquely determined by these
conditions.

Proof The operator �ket� is bounded on L2(M) for t > 0, by the functional
calculus, because the function x �→ xke−tx is bounded on R+. Hence,

�ku(t, ·) ∈ L2(M), (9.42)

for all k ∈ N and t > 0.
The next step is to check that et� is differentiable with respect to t in the operator

topology. For t < 0,

lim
h→0

e−(t+h)x − e−tx
h

= xe−tx ,

and the mean value theorem shows that the convergence is uniform for x ∈ [0,∞).
Therefore, by the functional calculus,

lim
h→0

1

h

[
e(t+h)� − et�

]
= �et�,

with convergence in operator norm. It follows that u is weakly differentiable with
respect to t , and that the equation
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∂tu = �u (9.43)

holds in the sense of weak derivatives. By (9.42), this shows that ∂kt u(t, ·) ∈ L2(M)

for all k ∈ N.
Smoothness of u can now be deduced from elliptic regularity. For T > 0, let

χ ∈ C∞0 (0, T ). The product manifold Ω = [0, T ] ×M is a compact manifold with
boundary. For the metric dt2 + g, the Laplacian is ∂2

t +�, and by (9.42) and (9.43)
we have

(∂2
t +�)k(χu) ∈ L2(Ω)

for all k ∈ N. Therefore, χu ∈ C∞(R+ ×M) by Theorems 9.26 and 9.27, which
proves (a).

The smoothness of u implies in particular that (9.43) holds in the classical sense,
proving (b). From the functional calculus, the pointwise convergence etx → 1 as
t → 0+ implies that

lim
t→0+

et� = I

in the strong operator sense (see Example 2.12). Thus u(t, ·)→ f in L2(M), which
establishes (c).

Finally, to prove uniqueness, suppose u1 and u2 satisfy (a), (b), and (c), with
uj (t, ·) ∈ L2(M). Then v := u1 − u2 also solves the heat equation, implying that

d

dt
‖v(t, ·)‖2 = 〈∂tv, v〉 + 〈v, ∂tv〉

= 〈v,�v〉
≤ 0.

Since v(t, 0)→ 0 in the L2 sense as t → 0+, this shows that v = 0. 
�
Our main goal in this section will be to construct an integral kernel for the heat

operator and then use its asymptotics as t → 0 to derive the Weyl formula. The
kernel construction is based on the Euclidean heat operator, so we first review that
case.

Example 9.30. Let −� be the Laplacian on R
n, with domain H 2(Rn). The heat

operator et� is defined by the functional calculus and can be written explicitly using
the Fourier transform. For f ∈ C∞0 (Rn),

et�f (x) = (2π)−n/2
∫

Rn

eix·ξ−t |ξ |2 f̂ (ξ) dnξ

= (2π)−n
∫

Rn

∫

Rn

ei(x−y)·ξ−t |ξ |2f (y) dny dnξ.
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By Fubini’s theorem, we can take the ξ integral first,

∫

Rn

ei(x−y)·ξ−t |ξ |2 dnξ =
(π
t

)n/2
e−|x−y|2/4t .

Hence, with the integral kernel

Ψ (t; r) = (4πt)−n/2e−r2/4t , (9.44)

the heat operator can be written as

et�f (x) =
∫

Rn

Ψ (t; |x − y|)f (y) dny, (9.45)

for f ∈ C∞0 (Rn).
Using the explicit integral kernel, we can see that the convergence as t → 0 is

actually better than expected from the functional calculus. In (9.45), the change of
variables to y = x + w√t yields

∫

Rn

Ψ (t, |x − y|)f (y) dny = (4π)−n/2
∫

Rn

e−|w|2/4f (x + w√t) dnw.

For f continuous, it follows that

lim
t→0+

∫

Rn

Ψ (t, |x − y|)f (y) dny = f (x), (9.46)

uniformly on compact sets. ♦

9.5.1 Maximum Principle

A solution of the heat equation represents a distribution of temperatures as a function
of time. Intuitively, since heat flows from warmer regions to colder regions, it should
be impossible for a heat solution to take on a local maximum as a function of both
time and position. The mathematical formulation of this idea will prove useful later
on for error estimates in the heat kernel construction.

Theorem 9.31 (Maximum Principle for the Heat Equation). Suppose M is a
compact Riemannian manifold. If u ∈ C∞(R+ × M) satisfies the heat equation
(9.40) and u extends continuously to t = 0, then

max
t≥0,x∈M u(t, x) = max

x∈M u(0, x).
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Proof For ε > 0, consider the shifted function uε(t, x) := u(t, x)− εt . Assuming
that u solves the heat equation, we have

∂tu
ε = �uε − ε. (9.47)

On the compact set [0, T ] × M , uε attains a maximum at some point (t0, p0).
Suppose that t0 > 0, which implies that

∂tu
ε(t0, p0) ≥ 0

(with equality if t0 < T ). Then, by (9.47),

�uε(t0, p0) ≥ ε > 0. (9.48)

Let (x1, . . . , xn) be a set of geodesic polar coordinates centered at p0. The fact
that uε(t0, ·) has a local maximum at p0 implies that

∂2
j u

ε(t0, p0) ≤ 0, (9.49)

for each j . Hence �uε ≤ 0, contradicting (9.48).
We conclude that t0 = 0, which yields

max[0,T ]×M u
ε = max

x∈M uε(0, x).

Hence, by the definition of uε,

max[0,T ]×M u ≤ max
x∈M u(0, x)+ εT .

The claim is proven by taking first ε→ 0, and then T →∞. 
�
Note that the maximum principle applies also to −u, yielding an equivalent

minimum principle,

min
t≥0,x∈M u(t, x) = min

x∈M u(0, x).

9.5.2 Heat Kernel

The relationship between heat propagation and geometry was first worked out in
1949, in the following characterization of the heat kernel of a Riemannian manifold
[62].
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Theorem 9.32 (Minakshisundaram–Pleijel). Let M be a compact Riemannian
manifold. There exists a function H ∈ C∞(R+ ×M ×M) such that

et�f (x) =
∫

M

H(t; x, y)f (y) dV (y), (9.50)

for f ∈ L2(M). If f is continuous, then

lim
t→0+

∫

M

H(t; x, y)f (y) dV (y) = f (x). (9.51)

For each x ∈ M , there is a uniform asymptotic expansion as t → 0+,

H(t, x, x) ∼ (4πt)−n/2
∞∑
j=0

αj (x)t
j , (9.52)

where α0 = 1 and αj depends only on the metric and its derivatives at x.

Theorem 9.32 can be extended to complete manifolds, with or without boundary.
We restrict our attention to the compact case here to simplify the discussion. The
proof is based on the construction of a parametrix, i.e., an approximate solution
that captures the essential features of the true heat kernel. The model for the heat
parametrix is based on the Euclidean heat kernel from Example 9.30.

Given a point y ∈ M , let gij denote the metric in a set of geodesic normal coor-
dinates x1, . . . , xn centered at y. In terms of the corresponding polar coordinates
(r, ω) ∈ [0, r0)× S

n−1, we will write the volume density factor as

ϕy(r, ω) := √g.

By Lemma 9.11, ϕy is smooth and satisfies

ϕy = 1+O(r2)

as r → 0.
According to Lemma 9.12, the metric has the form ds2 = dr2 + h in geodesic

polar coordinates, where h denotes a family of metrics on S
n−1 parametrized by r .

Since the Jacobian of the change of coordinates from xj to (r, ω) equals rn−1, the
volume density factor

√
h is related to ϕy by

√
h = rn−1ϕy.
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The Laplacian of a radial function ψ(r) is thus given by

�ψ = 1√
h
∂r

(√
h ∂rψ

)

= ∂2
r ψ + (n− 1)r−1∂rψ + ∂r(logϕy)ψ.

(9.53)

Our first goal is to derive a local coordinate version of the heat expansion in polar
coordinates. We start from the Euclidean heat kernel Ψ (t; r) defined by (9.44). By
identifying r with the geodesic polar coordinate centered at y, we can interpret Ψ
as a function on R+ × B(y; r0), where r0 := inj(M). From (9.53) we compute that

(∂t −�x)Ψ (t; r) = r

2t
∂r (logϕy) Ψ (t; r), (9.54)

where r := dist(x, y).
Equation (9.54) serves as the basis for the iterative construction of a parametrix.

The argument given below could be applied to the case of a complete manifold,
provided there is a lower bound on the injectivity radius. In that case, however, the
error estimate would only be uniform on compact sets.

Lemma 9.33 (Heat Parametrix). On a compact Riemannian manifold M , for
each k ∈ N, there exists a function Fk ∈ C∞(R+ × M × M) with the following
properties:

(a) Fk is an approximate solution of the heat equation, in the sense that

(∂t −�x)Fk(t, x, y) = O(tk−n/2)

as t → 0, uniformly for (x, y) ∈ M ×M .
(b) For f ∈ C∞(M),

lim
t→0+

∫

M

Fk(t, x, y)f (y) dV (y) = f (x),

uniformly for x ∈ M .

Proof We start by using the Euclidean heat kernel Ψ to make the local ansatz,

Fk(t, x, y) =
k∑

j=0

tj uj (x, y)Ψ (t; r),

for r := dist(x, y) < r0, where r0 is the injectivity radius of M . The coefficients uj
are yet to be determined. From (9.54) we compute that
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(∂t −�x)

k∑
j=0

tj ujΨ (t; r)

=
k∑

j=0

[
juj t

j−1 + r

2t
∂r (logϕy)uj t

j − tj�xuj − r

t
(∂ruj )t

j
]
Ψ

=
[ r

2
∂r(logϕy)u0 − r∂ru0

]
t−1Ψ

+
k∑

j=1

[
juj + r

2
∂r(logϕy)uj −�xuj−1 − r∂ruj

]
tj−1Ψ − (�xuk)t

kΨ.

To cancel the leading t−1 term, we set

u0 = ϕ
− 1

2
y . (9.55)

Setting the coefficient of the term of order tj−1 equal to zero then gives a recursive
relation,

r∂r

[
rjϕ

1
2
y uj

]
= rjϕ

1
2
y �xuj−1.

This can be solved by an integral formula,

uj (rω, y) = r−jϕy(r, ω)−
1
2

∫ r

0
sj−1ϕy(s, ω)

− 1
2�xuj−1(sω, y) ds, (9.56)

for j = 1, . . . , k. The smooth dependence of ODE solutions on initial data from
Theorem 9.8 implies that ϕy(x) is smooth in both variables. It thus follows from
(9.56) that the coefficients uj are smooth functions.

The local coefficient formulas (9.55) and (9.56) are only valid for dist(x, y) <
r0. To define the parametrix globally, we introduce a cutoff χ ∈ C∞[0,∞), with
χ(r) = 1 for r ≤ r0/2 and χ(r) = 0 for r ≥ 3r0/4. For each x, y ∈ M we define

Fk(t, x, y) := χ(dist(x, y))
k∑

j=0

tj uj (x, y)Ψ (t, dist(x, y)). (9.57)

By the construction of uj ,

(∂t −�)Fk = −(χ ◦ d)tk(�uk)Ψ − [�,χ ◦ d]
k∑

j=0

tj ujΨ. (9.58)
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Since�uk is smooth and depends only on the metric and its derivatives, and tn/2Ψ is
continuous, the first term is uniformly O(tk−n/2). For the second term, the operator
[�,χ ◦ d] restricts the support of Ψ (t, r) to r ∈ [r0/2, 3r0/4]. For r in this range,
Ψ and its derivatives satisfy a uniform O(tN) estimate for any N > 0. This proves
(a).

To prove (b), a simple scaling argument shows that only the j = 0 term
contributes in the limit,

lim
t→0+

∫

M

Fk(t, x, y)f (y) dV (y)

= lim
t→0+

∫

M

χ(dist(x, y))u0(x, y)Ψ (t, dist(x, y))f (y) dV (y).

If we write the integral in geodesic polar coordinates centered at x, then the measure
becomes dV (y) = ϕ(y, x) dny. If f is continuous, then by (9.46) and the fact that
u0(x, x) = 1, we have

lim
t→0+

∫

M

Fk(t, x, y)f (y) dV (y) = f (x).

The limit is uniform in x because f is uniformly continuous by the compactness of
M . 
�

We are now prepared to prove Theorem 9.32, using the parametrix provided by
Lemma 9.33 as a starting point.

Proof of Theorem 9.32 Let Fk be the heat parametrix constructed as in
Lemma 9.33, for some k > n/2. Let us write the error term from (9.58) as
Rk(t, x, y), so that

(∂t −�)Fk = Rk. (9.59)

Our goal is to modify Fk to remove this error term, without affecting the behavior
of Fk as t → 0. Since we have at our disposal the heat operator et� provided by
the spectral theorem, the most direct approach is to solve the inhomogeneous heat
equation

(∂t −�)Qk = Rk,

subject to the initial condition Qk|t=0 = 0.
This inhomogeneous problem can be solved using Duhamel’s principle, which

gives

Qk(t, x, y) :=
∫ t

0
e(t−s)�Rk(s, x, y) ds. (9.60)
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Note that Rk is smooth for t > 0 and Rk = O(tk−n/2) uniformly as t → 0+. Using
these facts, we can justify differentiation under the integral to obtain

∂tQk(t, x, y) = Rk(t, x, y)+
∫ t

0
�e(t−s)�Rk(s, x, y) ds

= Rk(t, x, y)+�Qk(t, x, y).

(9.61)

We now set H := Fk −Qk , and observe that H ∈ C∞(R+ ×M ×M) and

(∂t −�)H = 0 (9.62)

by (9.59) and (9.61). Given f ∈ C∞(M), set

u(t, x) :=
∫

M

H(t, x, y)f (y) dV (y) (9.63)

for t > 0. Since H is smooth in the variables (t, x) by construction, differentiation
under the integral in (9.63) is easy to justify. It follows u is smooth and satisfies
(∂t −�)u = 0 by (9.62).

To study the limit t → 0 we need to estimate Qk in this limit. The maximum
principle (Theorem 9.31) implies that for fixed s,

max
t≥s,x,y∈M

∣∣∣e(t−s)�Rk(s, x, y)
∣∣∣ = max

x,y∈M
∣∣Rk(s, x, y)

∣∣.

Since Rk(s, x, y) is uniformly O(sk−n/2), by Lemma 9.33, we can estimate the
integral in (9.60) to obtain

Qk(t, ·, ·) = O(tk−n/2+1), (9.64)

uniformly as t → 0.
Using (9.64), along with part (b) of Lemma 9.33, we conclude that

u(t, ·)→ f,

uniformly as t → 0+. Therefore u satisfies the conditions of Theorem 9.29. By
uniqueness, this means that

et�f (x) =
∫

M

H(t, x, y)f (y) dV (y), (9.65)

for f ∈ C∞(M). Since both sides represent the action of bounded operators, the
equality extends to f ∈ L2(M).
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The asymptotic expansion of H(t, x, x) follows from the construction of Fk in
Lemma 9.33. By (9.57), for each k we have

H(t, x, x) = (4πt)−n/2
k∑

j=0

tj uj (x, x)+Qk(t, x, x). (9.66)

The uniform estimate on the remainder term follows from (9.64). 
�

9.5.3 Spectral Applications

Let M be a compact Riemannian manifold. By Theorem 9.25, there is an orthonor-
mal basis {ψj } for L2(M), consisting of eigenvalues of −� with corresponding
eigenvalues

0 = λ0 < λ1 < · · · → ∞.

The existence of the smooth heat kernel shows that the heat operator et� is Hilbert–
Schmidt.

By adapting the proof of Mercer’s theorem (Theorem 4.23), we can deduce that

H(t, x, y) =
∞∑
k=0

e−λktψk(x)ψk(y),

with uniform convergence on [t0,∞)×M ×M for t0 > 0. It then follows from the
proof of Theorem 4.24 that et� is trace-class for t > 0, with

tr
(
et�
) =

∫

M

H(t, x, x) dV (x).

Since the asymptotic expansion in Theorem 9.32 is uniform, it can be integrated
over M to obtain

∫

M

H(t, x, x) dV (x) ∼ (4πt)−n/2
∞∑
j=0

aj t
j ,

where

aj :=
∫

M

αj dV .

The coefficients {aj } are called the heat invariants of M . They can be computed
explicitly, in terms of Riemannian curvature, but we will not get into that here,
except to note that since α0 = 1,

a0 = vol(M).

Writing the trace as a sum over the eigenvalues yields the following:



9.5 Heat Equation 281

Theorem 9.34. The heat invariants of a compact Riemannian manifold are deter-
mined by the spectrum, through the asymptotic expansion

∞∑
k=0

e−λkt ∼ (4πt)−n/2
∞∑
j=0

aj t
j ,

as t → 0+.

The leading term in the heat expansion gives the Weyl asymptotic for eigenfunc-
tions on a compact manifold. Define the counting function

NM(τ) := #{λk ≤ τ }.

Corollary 9.35 (Weyl’s Asymptotic Formula). The eigenvalues of a compact
Riemannian manifold satisfy

NM(τ) ∼ (2π)−nωn vol(M)τ
n
2 (9.67)

as t →∞, where ωn is the volume of the unit ball in R
n, (6.50). Equivalently, if the

eigenvalues are arranged in increasing order,

λk ∼ (2π)2
(

k

ωn vol(M)

)2/n

as k→∞.

Proof The heat trace can be written as a Stieljes integral

∞∑
k=0

e−λkt =
∫ ∞

0
e−txdNM(x).

By Karamata’s result (Theorem 6.33), the asymptotic from Theorem 9.34 implies
that

NM(τ) ∼ (4π)−
n
2

vol(M)

�(n/2+ 1)
τ
n
2 .


�
Example 9.36. Let us consider the two explicit cases from Examples 9.22 and 9.23.
For the quotient XΓ := R

n/Γ , the counting function is given by

NXΓ (τ) = #
{
k ∈ Γ ∗ : |k| ≤ √τ}.
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The number of lattice points in a ball of radius
√
τ can be estimated as in

Lemma 6.21, to deduce that

NXΓ (τ) ∼
vol(B(0;√τ))
vol(Rn/Γ ∗)

. (9.68)

If A is the linear transformation mapping the standard basis for Rn to a set of
generators {v1, . . . , vn} for Γ , then

vol(XΓ ) = detA.

By the definition of the dual lattice, 2π(At )−1 maps the standard basis to a set of
generators for Γ ∗. Thus we have

vol(Rn/Γ ∗) = det(2πA−1)

= (2π)n

vol(XΓ )
.

From (9.68) we thus obtain

NXΓ (τ) ∼ (2π)−n vol(XΓ )ωnτ
n
2 ,

in agreement with (9.67).
For the unit sphere S2, the eigenvalues are given by l(l+1) for l ∈ N0, each with

multiplicity 2l + 1. The number of eigenvalues with 0 ≤ l ≤ q is given by

q∑
l=0

(2l + 1) = (q + 1)2.

Since (q + 1)2 ∼ q(q + 1), this gives

NS2(τ ) ∼ τ.

Since vol(S2) = 4π and ω2 = π , this matches (9.67). ♦

9.6 Wave Propagation on Compact Manifolds

We turn next to the analysis of the wave equation,

∂2
t u−�u = 0, (9.69)

on a Riemannian manifold. In this case we will focus on compact manifolds with
boundary.
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As with the heat equation, the functional calculus can be used to construct weak
solutions of the wave equation. The functions cos(tx) and sin(tx)/x are smooth and
bounded for t, x ∈ R. We can thus define two families of wave operators on L2(Ω),
by applying these functions to

√−�. Formally at least, the function

u(t, ·) := cos(t
√−�)u0 + sin(t

√−�)√−� v0 (9.70)

solves (9.69) for the initial conditions

u(0, ·) = u0, ∂tu(0, ·) = v0. (9.71)

We will show that u is a weak solution of (9.69), in the sense that u ∈
C2(R, L2(Ω)), u(t, ·) ∈ D(�) for all t , and u satisfies ∂2

t u = �u. The space
Cm(R, L2(Ω)) is defined as the set of continuous functions R → L2(Ω) which
admit m continuous derivatives defined as L2-limits of difference quotients. The
condition that u ∈ C2(R, L2(Ω)) implies in particular that ∂2

t u exists as a weak
derivative.

Theorem 9.37. LetΩ be a compact manifold with boundary, and−� the Dirichlet
Laplacian as defined in Section 9.3. Given u0 ∈ D(�), v0 ∈ H 1

0 (Ω), the function u
defined by (9.70) is the unique weak solution of the wave equation that satisfies the
initial conditions (9.71).

If u0 and v0 are smooth functions that vanish to all orders at ∂Ω , then u ∈
C∞(R×Ω).
Proof Let {ψk} ⊂ H 1

0 (Ω) be the eigenfunction basis for L2(Ω) given in
Theorem 9.25, with eigenvalues {λk}. Note that

‖ψk‖2
H 1 = (1+ λk).

For f ∈ L2(Ω), this implies that

‖f ‖2
H 1 =

∞∑
k=1

(1+ λk)
∣∣〈ψk, f 〉

∣∣2. (9.72)

Since the basis consists of eigenfunctions, we also have

‖�f ‖2 =
∞∑
k=1

λ2
k

∣∣〈ψk, f 〉
∣∣2.

In conjunction with (9.72) this shows that, for f ∈ L2(Ω),

f ∈ D(�) ⇐⇒
∞∑
k=1

λ2
k

∣∣〈ψk, f 〉
∣∣2 <∞. (9.73)



284 9 Spectral Theory on Manifolds

Given u0 ∈ D(−�) and v0 ∈ H 1
0 (Ω), define the coefficients

ak := 〈u0, ψk〉, bk := 〈v0, ψk〉.

The function u defined by (9.70) is then given by

u =
∞∑
k=1

[
cos(t

√
λk)akψk + sin(t

√
λk)√

λk
bkψk

]
. (9.74)

By (9.72) and (9.73), the coefficients satisfy

∞∑
k=1

λ2
k|ak|2 <∞,

∞∑
k=1

λk|bk|2 <∞. (9.75)

It thus follows from (9.73) that u(t, ·) ∈ D(�).
The estimates (9.75) also justify taking L2 derivatives of u with respect to t by

differentiating (9.74) term by term. For example, the derivative of the first term is

∂t

∞∑
k=1

cos(t
√
λk)akψk = lim

h→0

∞∑
k=1

[
cos((t + h)√λk)− cos(t

√
λk)

h

]
akψk.

By the mean value theorem, the expression in brackets is bounded by
√
λk ,

uniformly in t and h. Therefore, by (9.75), we can apply the dominated convergence
theorem to take the limit h→ 0 inside the sum, in the L2 sense. This yields

∂t

∞∑
k=1

cos(t
√
λk)akψk = −

∞∑
k=1

√
λk sin(t

√
λk)akψk.

By the same argument, we can see that ∂2
t u exists as a weak L2 derivative, given by

∂2
t u = −

∞∑
k=1

[
λk cos(t

√
λk)akψk +

√
λk sin(t

√
λk)bkψk

]
.

This shows that u ∈ C2(R, L2(Ω)) and u is a weak solution of (9.69).
To prove that the weak solution is uniquely determined by initial conditions, we

use an argument based on conservation of energy. The total energy of the wave
solution at time t is defined as

E(t) := 1

2

∥∥∂tu(t, ·)
∥∥2
L2(Ω)

+ 1

2

∥∥∇u(t, ·)∥∥2
L2(Ω)

. (9.76)
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If u is a weak solution of (9.69), then E is finite and satisfies

∂tE = Re〈∂tu, ∂2
t u〉 + Re〈∇u, ∂t∇u〉

= Re〈∂tu,�u〉 − Re〈u, ∂t�u〉
= 0.

The total energy is thus independent of t . If u is a solution with vanishing initial
data u0 and v0, then E = 0 for all t ∈ R, implying that u is constant and therefore
identically 0. By linearity, it follows that the solution is uniquely determined by u0
and v0.

For the additional regularity claim, suppose that u0, v0 are smooth and vanish to
infinite order at ∂Ω . Then �lu0 and �lu0 are contained in D(�) for all l ∈ N0. It
then follows from (9.73) that

∞∑
k=1

λ2l
k |ak|2 <∞,

∞∑
k=1

λ2l
k |bk|2 <∞,

for all l. This implies, again by (9.73), that �lu(t, ·) ∈ D(�) for all l. Hence
u(t, ·) ∈ Hm(Ω) for all m by Theorem 9.27, and therefore u(t, ·) ∈ C∞(Ω) by
Theorem 9.26. The same argument shows that the weak derivatives ∂mt u exist for all
m and are represented by smooth functions on Ω . It then follows from Lemma 2.22
that u is smooth as a function of t also. 
�

9.6.1 Propagation Speed

In the classical theory of wave propagation, Huygens’ principle says that wave fronts
travel at a fixed propagation speed, which is equal to 1 for the wave equation written
in the form (9.69). Mathematically, this property is usually formulated as a statement
about the rate at which the support of a solution will expand, which is called the
propagation speed.

Because we have only demonstrated the existence of solutions of the wave
equation on a compact manifold with boundary, we will restrict our attention to
that context for this result. Generalizing this principle to non-compact manifolds is
straightforward.

Theorem 9.38 (Finite Propagation Speed). Let Ω be a compact Riemannian
manifold with boundary, and suppose u is a smooth solution of the wave equation
as given by Theorem 9.37, with Dirichlet boundary conditions on ∂Ω and initial
conditions u0, v0 ∈ C∞0 (Ω). If K := supp u0 ∪ supp v0, then

supp u(·, t) ⊂ {x ∈ Ω : dist(x,K) ≤ |t |}. (9.77)
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Proof It suffices to consider the case when u is real-valued, by linearity. Also, since
u(x,−t) solves the wave equation with initial conditions u0 and −v0, we need to
only consider t ≥ 0. As noted in the remarks following Definition 9.2, we may
assume that the manifold with boundary Ω is a closed domain within a compact
manifold M .

Given p0 ∈ Ω , let Up(r0) be a geodesic polar neighborhood in M , with radial
coordinate r , as described in Theorem 9.15. The set Up(r0) may extend outside the
boundary of Ω into M . For 0 ≤ t ≤ r0 we set

Wp(t) :=
{
q ∈ Ω : dist(p, q) ≤ r0 − t

}

= {r ≤ r0 − t} ∩Ω.

We adapt the definition (9.76) of total energy, to write the energy of u contained
with Wp(t) as

η(t) :=
∫

Wp(t)

[
(∂tu)

2 + ‖∇u‖2
g

]
dV.

where ‖∇u‖2
g := g(∇u,∇u) and the integrand is evaluated at time t .

Because ∂r is orthogonal to spheres of constant r , by the Lemma 9.12 (Gauss),
the volume density dV decomposes as dr×dS, where dS is the measure on ∂Wp(t)

induced by the restriction of g. Separating the radial and spherical integrals allows
us to write

η(t) =
∫ r0−t

0
h(r, t) dr,

where

h(r, t) :=
∫

∂B(p;r)∩Ω

[
(∂tu)

2 + ‖∇u‖2
g

]
dS.

The derivative is then

η′(t) = −h(r0 − t, t)+
∫ r0−t

0
∂th(r, t) dr. (9.78)

Using the fact that u satisfies the wave equation (9.69), we have

∂th(r, t) = 2
∫

∂B(p;r)∩Ω

[
(∂2
t u)(∂tu)+ g(∂t∇u,∇u)

]
dS

= 2
∫

∂B(p;r)∩Ω

[
(∂tu)(�u)+ g(∂t∇u,∇u)

]
dS.
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Thus

∫ r0−t

0
∂th(r, t) dr = 2

∫

Wp(t)

[
(∂tu)(�u)+ g(∂t∇u,∇u)

]
dV. (9.79)

Green’s identity (Theorem 9.21) is easily extended to the case of piecewise smooth
boundary, yielding

∫

Wp(t)

[
(∂tu)�u+ g(∂t∇u,∇u)

]
dV =

∫

∂Wp(t)

(∂tu)∂νu dS.

The boundary of Wp(t) has two components, ∂B(p; r0− t)∩Ω and B(p; r0− t)∩
∂Ω . However, since u|∂Ω = 0, the integrand vanishes on the latter. Therefore (9.79)
can be reduced to

∫ r0−t

0
∂th(r, t) dr = 2

∫

∂B(p;r0−t)∩Ω
(∂tu)∂ru dS. (9.80)

Since ∂r is a unit vector, |∂ru| ≤ ‖∇u‖g , and so plugging (9.80) back into (9.78)
and using the definition of h(r0 − t, t) give

η′(t) ≤ −
∫

∂B(p;r0−t)∩Ω

[
(∂tu)

2 − 2(∂tu)‖∇u‖g + ‖∇u‖2
g

]
dS.

The integrand is nonnegative, implying that η′(t) ≤ 0.
Suppose now that u and ∂tu vanish onWp(0) at time t = 0, implying that η(0) =

0. Since η′(t) ≤ 0, this means that η(t) = 0 for all t ∈ [0, r0]. Therefore u vanishes
on the set {(x, t) : x ∈ Wp(t)}. In particular, u(p, r0) = 0.

Since Ω is compact, by Lemma 9.18 there exists r0 > 0 such that each Up(r0)
is a geodesic polar neighborhood in M for each p ∈ Ω . The argument given above
then applies to all points p with dist(p,K) ≥ r0, which proves that (9.77) holds for
0 ≤ t ≤ r0. The full claim then follows by iterating this argument from later starting
times. 
�

Note that Theorem 9.38 essentially says that the time taken for a signal from
outside of K to reach an interior point is bounded by the distance from the interior
point to ∂K , i.e., the propagation speed is at most one.

9.7 Complete Manifolds and Essential Self-adjointness

In this section, we consider the problem of essential self-adjointness of the
Laplacian on C∞0 (M), where M is a complete, non-compact Riemannian manifold.
The one such case we have dealt with so far is Euclidean R

n, for which essential
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self-adjointness was demonstrated in Example 3.26. That argument was based on
the Fourier transform and does not generalize to manifolds.

The example of a bounded open subset Ω ⊂ R
n, considered in Section 9.4,

shows that essential self-adjointness may fail in the non-compact setting, in cases
where boundary conditions are needed. The crucial property which distinguishes Rn

from a bounded open subset is completeness.

Theorem 9.39. For a complete Riemannian manifold M , the Laplacian is essen-
tially self-adjoint on C∞0 (M).

This result, proven independently by Gaffney [33] and Roelcke [75], is funda-
mental for the spectral analysis of non-compact manifolds. It implies the self-adjoint
extension of −� is uniquely defined, and therefore its spectral theory yields
geometric invariants. The existence of a self-adjoint extension also gives access to
the functional calculus for −�, an essential tool in the analysis of PDE on M .

On a more practical level, Theorem 9.39 allows us to analyze the spectrum using
smooth, compactly supported test functions. For example, it shows that the location
of the bottom of the spectrum is given by

inf σ(−�) = inf
f∈C∞0 (M)\{0}

‖∇f ‖2

‖f ‖2 . (9.81)

We will prove Theorem 9.39 using a unitary group strategy due to Chernoff [21].
A unitary group is a family of unitary operators U(t), parametrized by t ∈ R, such
that

U(s)U(t) = U(s + t).

This concept was introduced in Exercise 5.5, where we saw that a self-adjoint
operator A generates a unitary group U(t) := eitA.

In the current application, we will use the solution of the wave equation to
construct a unitary group whose generator is the Laplacian. The following result
will then allow us to prove essential self-adjointness.

Theorem 9.40. Suppose thatA is a symmetric operator on a Hilbert space H, such
that A maps D(A) into itself. Let U(t) be a unitary group on H with the following
properties:

(i) U(t)A = AU(t) on D(A).
(ii) U(t)D(A) ⊂ D(A).

(iii) For all v ∈ D(A),

lim
h→0

1

h

[
U(t + h)v − U(t)v

]
= iAU(t)v.

Then Ak is essentially self-adjoint on D(A) for each k ∈ N.
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Proof By Theorem 3.30, it suffices to establish the injectivity of (Ak)∗±i. Suppose
that (Ak)∗w = ±iw for w ∈ D(A∗). For v ∈ D(A), consider the function

f (t) := 〈w,U(t)v〉. (9.82)

By the assumption on the derivative of U(t),

f (k)(t) =
〈
w, (iA)kU(t)v

〉

= ik
〈
(Ak)∗w,U(t)

〉

= ∓ik+1f (t).

The possible solutions are linear combinations of functions eαj t , where {αj } are
the kth roots of ∓ik+1. Since all of the roots have nonzero real part, any nontrivial
solution will grow exponentially in at least one direction. On the other hand, f (t) is
bounded for all t ∈ R by the definition (9.82), because U(t) is unitary. Therefore,
f ≡ 0.

This shows in particular that 〈w, v〉 = 0 for all v ∈ D(A), which implies w = 0
by the density of D(A). In other words, we have proven that

ker
(
(Ak)∗w ± i) = {0}.

Therefore, Ak is essentially self-adjoint by Theorem 3.30. 
�
The wave group on a complete manifold can be constructed from wave solutions

on a compact manifold, by virtue of the finite propagation speed established in
Section 9.6.1.

Theorem 9.41. Let M be a complete Riemannian manifold. Given initial data
u0, v0 ∈ C∞0 (M), the wave equation,

∂2
t u−�u = 0, u(0, ·) = u0, ∂tu(0, ·) = v0,

has a unique solution u ∈ C∞(R ×M) such that u(t, ·) has compact support for
each t .

Proof Since the compact case is covered by Theorem 9.37, we will assume that M
is non-compact. Let K0 ⊂ M be a compact set containing the supports of u0 and
v0. By the Heine–Borel property, the set

Kj := {p ∈ M : dist(p,K) ≤ j}

is compact for j ∈ N. For each j , we can define a compact manifold with boundary
Ωj ⊂ M by smoothing the boundary of K

j+ 1
2
, if necessary, so that Kj ⊂ Ωj .
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Let uj (x, t) be the solution of the wave equation with Dirichlet boundary condi-
tions on Ωj , as given by Theorem 9.37, with initial data u0, v0. By Theorem 9.38,
if i < j , then the solution uj (·, t) has support within Ki for |t | ≤ i. Therefore, the
restriction of uj to Ωi is a solution of the wave equation on Ωi for |t | ≤ i. By the
uniqueness property proven in Theorem 9.37, uj (x, t) = ui(x, t) for x ∈ Ωi and
|t | ≤ i. We can therefore patch together a global solution to the wave equation on
M by setting

u(t, x) :=
{
uj (t, x), |t | ≤ j and x ∈ Ωj,

0, otherwise.

Uniqueness of the global solution follows from the conservation of energy argument
used in Theorem 9.37. 
�

To obtain a unitary group from Theorem 9.41, we first introduce a new Hilbert
space whose norm is motivated by conservation of energy. Recall the energy
functional defined in (9.76),

E := 1

2
‖∂tu‖2 + 1

2
‖∇u‖2. (9.83)

Let us define W as the Hilbert space completion (as described in Section 2.4) of
C∞0 (M) with respect to the norm f �→ ‖∇f ‖. The square of the norm of (u, ∂tu),
as an element of W ⊕ L2(M), is then equal to 2E.

On C∞0 (M)⊕ C∞0 (M), we introduce the one-parameter family of maps

U(t)(u0, v0) = (u(·, t), ∂tu(·, t)) (9.84)

for t ∈ R, where u is the wave solution associated with (u0, v0) by Theorem 9.41.
The fact that E is constant for solutions of the wave equation implies that U(t) is an
isometry with respect to the norm on W ⊗ L2(M).

ClearlyU(0) = I , and the uniqueness of wave solutions implies thatU(t1+t2) =
U(t1)U(t2). Thus U(t) is invertible on C∞0 (M)⊕ C∞0 (M), with U(t)−1 = U(−t).
Since C∞0 (M)⊕ C∞0 (M) is dense in W ⊕ L2(M), we obtain the following:

Theorem 9.42. The family of operators U(t) defined by (9.84) extends to a unitary
group action on W ⊕ L2(M).

This result gives in particular the existence of weak solutions of the wave
equation on M , given initial data in W ⊗ L2(M). It also leads to a proof of
Theorem 9.39, through the following:

Proof of Theorem 9.39 For the unitary group U(t) given by W ⊕ L2(M), let
D(A) = C∞0 (M)⊕ C∞0 (M). By construction, for u0, v0 ∈ D(A), we have
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lim
h→0

1

h

[
U(t + h)− U(t)

]
(u0, v0) = ∂t (u, ∂tu)

= (∂tu,�u).

Hence, the requirements of Theorem 9.40 are satisfied with

A :=
(

0 −iI
−i� 0

)
.

Therefore, the operator

A2 =
(−� 0

0 −�
)

is essentially self-adjoint on D(A). It follows that −� is essentially self-adjoint on
C∞0 (M). 
�

To apply the strategy used in the proof of Theorem 9.39 to a complete manifold
with boundary Ω , we need a different choice of core domain. This is because the
space C∞0 (Ω) is not necessarily preserved under the wave group, even when ∂Ω
is smooth. Since the issue here is regularity, we can resolve it by imposing weaker
regularity assumptions on the core. For example, if we take

D0 :=
{
u ∈ L2(Ω) : u ∈ D(−�K) for some compact K ⊂ Ω

}
, (9.85)

where −�K denotes the Dirichlet Laplacian on K , then Theorem 9.38 shows that
D0 is preserved under the wave group. We can therefore argue as above to deduce
that −� is essentially self-adjoint on D0.

The larger core domain (9.85) has the advantage of not requiring any regularity
of ∂Ω . We can use it, for example, to construct a unique self-adjoint extension of the
Laplacian onM\K whereM is a complete Riemannian manifold andK is compact.

9.8 Essential Spectrum of Complete Manifolds

For a complete Riemannian manifold, the bottom of the spectrum and bottom of
the essential spectrum are of great interest from both physical and geometric points
of view. These are both geometric invariants, by the uniqueness of the self-adjoint
extension described in Theorem 9.39. Of course, for a compact manifold the bottom
of the spectrum is zero and the essential spectrum is empty, so these quantities are
only interesting in the non-compact case.

In this section, we will prove that the bottom of the essential spectrum depends
only on the geometry “at infinity,” and then use this to establish an estimate based
on volume growth.
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9.8.1 Decomposition Principle

In Corollary 7.13, we saw that a bounded, compactly supported perturbation of a
potential does not affect the essential spectrum of a Schrödinger operator. It is thus
natural to expect that compactly supported perturbations of a complete metric would
not change the essential spectrum. In fact, we can go even farther and consider
perturbations that change the structure of the manifold within a compact set.

Let M be a complete Riemannian manifold with a compact subset K ⊂ M . Let
−�M denote the Laplacian on M , and −�M\K the self-adjoint Laplacian on M\K
defined by imposing Dirichlet boundary conditions on ∂K , as described at the end
of Section 9.7. We will prove the following result, due to Donnelly and Li [27, Prop.
2.1], which implies that a pair of manifolds which are isometric outside a compact
set have the same essential spectrum.

Theorem 9.43. LetM be a complete Riemannian manifolds. IfK ⊂ M is compact,
then

σess(−�M) = σess(−�M\K).

Proof Recall that for a self-adjoint operator, the essential spectrum was charac-
terized in Theorem 5.13 by the existence of a Weyl sequence. The strategy for the
proof is to start with a Weyl sequence for λ ∈ σess(−�M), and then construct a new
Weyl sequence consisting of functions supported in M\K .

As noted after the proof of Theorem 5.13, it suffices to consider Weyl sequences
contained in a core domain on which the operator is essentially self-adjoint. Thus,
for λ ∈ σess(−�M) there exists a sequence {ϕk} ⊂ C∞0 (M) such that ‖ϕk‖ = 1,
ϕk → 0 weakly, and

(−�− λ)ϕk → 0 (9.86)

in norm. The sequence is also bounded uniformly in theH 1 norm, by (9.86) and the
fact that

‖ϕk‖2
H 1 =

〈
ϕk, (−�+ 1)ϕk

〉
,

from Green’s identity.
Choose a pair of cutoff functions χ, χ1 ∈ C∞0 (M) such that χ = 1 on K , and

χ1 = 1 on suppχ . Elliptic regularity (Theorem 9.27) gives the estimate

‖χ1ϕk‖H 2 ≤ C
(‖�(χ1ϕk)‖ + ‖χ1ϕk‖

)
. (9.87)

Note that

�(χ1ϕk) = χ1(�+ λ)ϕk − λχ1ϕk + [�,χ1]ϕk.
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The first term on the right approaches zero as k→∞ by (9.86), and the second and
third terms are uniformly bounded by the H 1 bounds on {ϕk}. Therefore, by (9.87),
the H 2 norms of {χ1ϕk} are uniformly bounded in k.

Let Ω ⊂ M be a compact manifold with boundary containing the support of
χ1. By the uniform H 2 bound on {χ1ϕk}, the sequences {∇(χ1ϕk)} and {χ1ϕk}
are bounded in H 1

0 (Ω). We can therefore apply Rellich (Theorem 6.9) in a finite
collection of coordinate patches. By passing to a subsequence, we can therefore
assume that {χ1ϕk} converges inH 1(Ω). Since ϕk → 0 weakly, theH 1 convergence
implies that

lim
k→∞‖χ1ϕk‖H 1 → 0. (9.88)

To complete the proof, consider the normalized sequence

ψk := (1− χ)ϕk
‖(1− χ)ϕk‖ ,

which is supported in M\K . We claim that this is a Weyl sequence for λ. The
normalization factor in the denominator satisfies

lim
k→∞‖(1− χ)ϕk‖ = 1,

by (9.88) and the fact that ‖ϕk‖ = 1. It follows that ψk → 0 weakly, by the weak
convergence ϕk → 0.

To complete the proof, we check the convergence of

(−�− λ)ψk = 1

‖(1− χ)ϕk‖
(
(1− χ)(−�− λ)ϕk + [�,χ ]ϕk

)
.

The normalizing factor approaches one, as noted above. As k → ∞, the first term
in parentheses on the right converges to zero by (9.86), while the second term
converges to zero by (9.88). Therefore,

(−�− λ)ψk → 0,

establishing that {ψk} is a Weyl sequence for λ. 
�

9.8.2 The Bottom of the Essential Spectrum

For a complete manifold, we noted that the bottom of the spectrum can be estimated
by the Rayleigh quotient (9.81). This formulation extends to the Laplacian onM\K ,
where K ⊂ M is compact and −�M\K denotes the Dirichlet Laplacian as in
Section 9.8.1:
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inf σ(−�M\K) = inf
f∈C∞0 (M\K)

‖∇f ‖2

‖f ‖2
. (9.89)

This follows from the fact that C∞0 (M\K) is dense in the core domain (9.85) used
to define −�M\K .

The formula (9.89) gives an effective tool for locating the bottom of the full
spectrum. The following result will allow us to apply similar estimates to the bottom
of the essential spectrum.

Theorem 9.44. For a complete manifold M ,

inf σess(−�M) = sup
K⊂M

(
inf σ(−�M\K)

)
,

where K ranges over all compact subsets of M .

Proof Let a0 := inf σess(−�M). From Theorem 9.43 we immediately have

sup
K⊂M

(
inf σ(−�M\K)

)
≤ a0. (9.90)

Assume, for the sake of contradiction, the inequality is strict. Then there exists ε > 0
such that

inf σ(−�M\K) ≤ a0 − 2ε (9.91)

for all compact K ⊂ M . By (9.89), for each K we can choose ϕ ∈ C∞0 (M\K) such
that ‖ϕ‖ = 1 and

〈ϕ,−�ϕ〉 < a0 − ε. (9.92)

Start by choosing such a function ϕ1 for K = ∅. Then set K1 = suppϕ1 and
choose ϕ2 ∈ C∞0 (M\K1). Continuing this process inductively yields an infinite
orthonormal sequence of functions ϕk ∈ C∞0 (M), each satisfying (9.92).

Let Π denote the spectral resolution of −�M . Since a0 is the bottom of the
essential spectrum, Π[0,a0−ε) has finite rank. Therefore, there exists a nonzero
function

u ∈ span{ϕk} ∩ rangeΠ[a0−ε,∞).

By (9.92), we have

〈u, (−�− a0 + ε)u〉 < 0.

On the other hand, the fact that u ∈ rangeΠ[a0−ε,∞) implies

〈u,−�u〉 ≥ (a0 − ε)‖u‖2.
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This contradiction shows that such a function u cannot exist. Therefore the
inequality (9.91) is impossible, which proves that equality holds in (9.90). 
�

By combining (9.89) with Theorem 9.44, we obtain a useful variational charac-
terization of the bottom of the essential spectrum:

inf σess(−�M) = sup
K⊂M

(
inf

f∈C∞0 (M\K)
‖∇f ‖2

‖f ‖2

)
. (9.93)

9.8.3 Volume Growth Estimate

As an example of the application of Theorem 9.44, in this section we will develop
a simple bound on the essential spectrum based on volume growth. This result is
adapted from Brooks [15].

Let M be a complete manifold. Fix an arbitrary base point x0 ∈ M , and let

V (r) := vol(B(x0; r)).

The exponential rate of volume growth for M is defined as

μ := lim sup
r→∞

logV (r)

r
, (9.94)

A simple argument with the triangle inequality shows that μ is independent of x0.
The Euclidean plane has V (r) = ωnr

n, so μ = 0 in that case.
Our main goal is the following:

Theorem 9.45. For a complete manifold M of infinite volume,

inf σess(−�M) ≤ μ2

4
.

Example 9.46. Consider the Poincaré disk B introduced in Example 9.14. In
geodesic polar coordinates (r, θ), the hyperbolic metric (9.25) takes the form

ds2 = dr2 + sinh2 r dθ2.

Hence

V (r) = 2π
∫ r

0
sinh(t) dt

= 2π(cosh r − 1).
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The volume growth rate is therefore μ = 1, and Theorem 9.45 gives
inf σess(−�B) ≤ 1

4 . In fact, we will see in Exercise 9.2 that σ(−�B) = [ 1
4 ,∞), so

the estimate is sharp. ♦
The proof of Theorem 9.45 follows immediately from Theorem 9.44 and the

following:

Theorem 9.47. If M is a complete manifold with boundary that has growth
constant μ, defined as in (9.94), then

inf σ(−�M) ≤ μ2

4
.

If M has infinite volume, then the same estimate holds for the Dirichlet Laplacian
−�M\K for K ⊂ M compact.

Proof Both sides of the inequality are zero if M is compact, so we can assume
that M is not compact. Fix a base point x0 ∈ M , and let ρ(x) := dist(x, x0) and
V (r) = volB(x0; r). For α > 0, we have a simple integral estimate

∫

M

e−αρ dV ≤
∞∑
m=0

[
V (m+ 1)− V (m)]e−αm

=
∞∑
m=1

V (m)e−αm(eα − 1).

By the definition of μ, we thus have

∫

M

e−αρ dV <∞ (9.95)

for all α > μ.
The strategy is to exploit (9.95) by constructing a family of trial functions for the

Rayleigh quotient. We first need to consider the regularity of ρ, since this function
is not differentiable in general. By the triangle inequality,

|ρ(x)− ρ(y)| ≤ dist(x, y),

so ρ is at least Lipschitz continuous with constant 1. We claim that this implies
that ρ is weakly differentiable with |∇ρ|g ≤ 1. This essentially follows from
Rademacher’s theorem, which says that a Lipschitz function on R

n is differentiable
almost everywhere. For the proof see, for example, Federer [30, Thm. 3.1.6] or
Heinonen [43, Thm. 3.1]. Applying Rademacher’s theorem in local coordinate
patches shows that ρ is differentiable almost everywhere, with |∇ρ|g ≤ 1 where the
derivative exists. Since Lipschitz implies absolute continuity, we can use integration
by parts along line segments to conclude that the almost everywhere defined
classical derivatives are also weak derivatives.
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For m ≥ 0, choose χm ∈ C∞0 (M) with 0 ≤ χm ≤ 1, such that

χM(x) =
{

1, ρ(x) ≤ m,

0, ρ(x) ≤ m+ 1.

Since the distance between {x : ρ(x) = m} and {x : ρ(x) = m+ 1} equals 1 for all
m, we can assume a uniform bound |∇χm|g ≤ c for all m.

Consider now the trial function fm := χme
−αρ/2. Because the weak first

derivatives of ρ are bounded, as noted above, we have fm ∈ H 1(M). The fact
that fm has compact support thus implies that fm can be approximated by C∞0 (M)

functions with respect to theH 1 norm. Therefore, from the Rayleigh quotient (9.81)
we deduce that

σ0‖fm‖2 ≤ ‖∇fm‖2, (9.96)

where σ0 := inf σ(−�).
The right-hand side of (9.96) can be estimated by

‖∇fm‖2 =
∫

M

[
|∇χm|2g − αχmg(∇χm,∇ρ)+

α2

4
χ2
m|∇ρ|2g

]
e−αρ dV

≤ (c2 + cα)
∫

supp∇χm
e−αρ dV + α2

4

∫

M

χ2
me
−αρdV,

using the gradient bounds |∇χm|g ≤ c and |∇ρ|g ≤ 1. For α > μ, e−αρ is integrable
by (9.95), so the integral over supp∇χm vanishes as m→∞, yielding

lim sup
m→∞

‖∇fm‖2 ≤ α2

4
‖e−αρ‖L1 .

Since ‖fm‖2 → ‖e−αρ‖L1 as m→∞, taking the limit of (9.96) gives

σ0 ≤ α2

4

for all α > μ. This proves the claim for −�M .
For the case M\K , we need the trial functions to vanish near K , which changes

the argument somewhat. As above, fix a base point x0 ∈ M and let ρ(x) :=
dist(x, x0). We also fix an inner cutoff function ψ ∈ C∞0 (M), with ψ = 1 on
K . For k ≥ 0 set

ρk(x) :=
{

0, ρ(x) ≤ k,

ρ(x)− k, ρ(x) > k.
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The new family of trial functions is

fm,k = χm(1− ψ)e−αρk/2,

which by (9.89) satisfies

σ0(M\K)
∥∥fm,k

∥∥2 ≤ ∥∥∇fm,k
∥∥2
.

Assuming that α > μ, we can estimate ‖∇fm,k‖2 and take the limit m → ∞ as
above. Assuming that k is large enough that ρk = 0 on suppψ , this gives

lim sup
m→∞

∥∥∇fm,k
∥∥2 ≤ α2

4

∥∥∥(1− ψ)2e−αρk
∥∥∥
L1
+ ‖∇ψ‖2.

Thus, for α > μ and k sufficiently large,

(
σ0(M\K)− α2

4

)∥∥∥(1− ψ)2e−αρk
∥∥∥
L1
≤ ‖∇ψ‖2. (9.97)

The fact that ρk → 0 pointwise and the assumption that M has infinite volume
together imply that

lim
k→∞

∥∥∥(1− ψ)2e−αρk
∥∥∥
L1
= ∞.

Therefore, (9.97) gives the inequality

σ0(M\K) ≤ α2

4

for all α > μ, which proves the claim. 
�

9.9 Exercises

9.1. Another model for two-dimensional hyperbolic space is the upper half-plane
H := {(x, y) : y > 0}, with the metric

ds2 = dx2 + dy2

y2 .

(a) If H and B are viewed as subsets of C, then the Cayley transform,

z �→ z− i
z+ i ,

maps H to B. Show that this map is an isometry.
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(b) Compute the Laplacian −�H in the H model, and show that the function ys

satisfies the eigenvalue equation −�Hu = λu for s ∈ C.
(c) Show that

[ 1
4 ,∞) ⊂ σ(−�H),

by creating a Weyl sequence using ys with cutoff functions.

9.2. Let −�H denote the hyperbolic Laplacian for the upper half-space introduced
in Exercise 9.1. In this exercise we will show that

−�H − 1
4 ≥ 0,

which shows that the bound from Example 9.46 is sharp.

(a) Use integration by parts and Cauchy–Schwarz to show that

∫ ∞

−∞
|φ|2 dy

y2 ≤ 4
∫ ∞

−∞

∣∣∣∣
∂φ

∂y

∣∣∣∣
2

dy,

with x fixed, for φ ∈ C∞0 (H).
(b) Deduce from (a) that

∫

H

(∣∣∣∣
∂φ

∂x

∣∣∣∣
2

+
∣∣∣∣
∂φ

∂y

∣∣∣∣
2
)
dx dy ≥ 1

4

∫

H

|φ|2 dx dy
y2

for φ ∈ C∞0 (H). Show that this implies the claimed lower bound on −�H.

9.3. Let Sn denote the unit sphere in R
n+1. By writing the Euclidean metric in

geodesic polar coordinates, we can see that

−�Rn+1 = − 1

rn

∂

∂r

(
rn
∂

∂r

)
− 1

r2�Sn .

Let q(x) be a harmonic polynomial on R
n+1, which means that

�Rn+1q = 0.

Assume also that q is homogeneous of degree l = 0, 1, 2, . . . , meaning that

q(cx) = clq(x)

for some c > 0.
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(a) Show that the restriction of a homogeneous harmonic polynomial q to S
n is an

eigenfunction of −�Sn , and compute the eigenvalue. (This construction yields
the full spectrum of −�Sn .)

(b) In the case n = 2, show that the spherical harmonics Y lm discussed in Section 7.4
are restrictions to the unit sphere of harmonic polynomials on R

3.

9.4. In a compact Riemannian manifold M , let B(x; r) denote a metric ball
of radius r centered at x, not necessarily contained in a geodesic coordinate
neighborhood. Suppose that we have estimates for the first Dirichlet eigenvalue of a
ball, of the form

λ1(B(x; r)) ≤ β(r)

for all x ∈ M and r > 0, where β is a function on R
+. (Estimates of this type can be

deduced from lower bounds on the curvature.) Use the min–max principle to prove
that

λk(M) ≤ β(d/2k),

where d := diam(M).

9.5. For a compact manifold M , prove that there exists a constant C > 0 such that
if φ is a normalized eigenfunction of −� with eigenvalue λ, then

sup |φ| ≤ Cλ
n−1

4 .

9.6. Let M be a compact Riemannian manifold. The scalar curvature S at a point
x ∈ M can be defined as a coefficient in the expansion for the area of a small
geodesic sphere. That is, S(x) is defined by the fact that

area(∂BM(x; ε)) = area(∂BRn(x; ε))
[

1+ S(x)

6n
ε2 +O(ε4)

]

as ε → 0, where BM denotes a metric ball in M and BRn a ball in Euclidean R
n.

Compute the coefficient u1(x, x) from heat parametrix formula (9.66) in terms of
S(x). Show that the resulting heat coefficient in Theorem 9.34 is

a1 = 1

6

∫

M

S dV.

Notes

For a thorough introduction to differentiable manifolds, see Lee [58]. The back-
ground material on differential geometry presented in Section 9.2 is covered
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much more completely in the standard texts. See, for example, do Carmo [26],
Klingenberg [52], Lee [57], or Petersen [66].

The spectrum of a compact Riemannian manifold is discussed in greater detail in
Berger [8, Ch. 9], Berger, Gauduchon, and Mazet [9], Chavel [19], and Schoen and
Yau [81, Ch. III]. Much of the focus in these books is on estimates of eigenvalues in
terms of Riemannian curvature, which we did not get into here.

The spectral theory of hyperbolic manifolds is covered in particular in Borthwick
[14] and Buser [17]. For applications to automorphic forms and number theory, see
Iwaniec [47] or Venkov [92].

The issue of recovering geometric data from the spectrum is reviewed in the
survey by Brooks [16]. See Lablée [55] for a recent more survey of spectral
geometry.

For more details on the behavior of heat kernels in the Riemannian setting see
Davies [23, Ch. 5] or Schoen and Yau [81, Ch. IV].



Appendix A
Background Material

A.1 Measure and Integration

As noted in the text, a measure on a set X consists of a σ -algebra M of measurable
subsets of X and a countably additive function μ : M → [0,∞]. To recall
the basic definitions, a σ -algebra is a collection of subsets that is closed under
countable unions and complements (and hence countable intersections as well). The
countable additivity property means that for any countable disjoint sequence of sets
A1, A2, . . . ,

μ
(∪∞j=1Aj

) =
∞∑
j=1

μ(Aj ). (A.1)

In the text we considered only σ -finite measure spaces, for which X can be
decomposed into a countable union of sets of finite measure.

Two important special cases can be defined with M equal to the collection of all
subsets of X:

Example A.1. The counting measure ν is defined by

ν(A) :=
{

#A, A is finite,

∞, A is infinite.

Counting measure is the default choice for a discrete set, such as N or Z. (Clearly,
ν is σ -finite if and only if X is countable.)
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Example A.2. For p ∈ X, the point measure δp is defined by

δp(A) :=
{

1, p ∈ A,
0, p /∈ A.

For a topological space X, the collection B of Borel sets is defined as the σ -
algebra generated by the open subsets of X. A Borel measure is simply a measure
defined on B.

In this section we will review some of the basics of measure and integration
theory. This material is standard and covered in many texts, so we will omit most of
the proofs. For additional background, see, e.g., Folland [31], Royden [76], Rudin
[78], or Stein and Shakarchi [87].

A.1.1 Lebesgue Measure

To define Lebesgue measure on R
n, we start from the standard definition of the

volume of a closed rectangle,

vol
(
I1 × I2 × · · · × In

) :=
n∏
j=1

�(Ij ),

where �[a, b] := b− a. Let R denote the collection of closed rectangles in R
n. The

outer measure of a set A ⊂ R
n is then defined by taking the infimum over coverings

by countable unions of rectangles,

m∗(A) := inf

{ ∞∑
j=1

vol(Rj ) : A ⊂
∞⋃
j=1

Rj

}
.

In general, an outer measure is defined as a countably subadditive set function,
meaning that

m∗(∪Aj) ≤
∞∑
j=1

m∗(Aj ),

for a countable sequence of sets {Aj }.
To obtain a measure, we need to restrictm∗ to an appropriate class of measurable

sets. Constantin Carathéodory established a criterion for this: a set E is Lebesgue
measurable if, for each A ⊂ R

n,

m∗(A) = m∗(A ∩ E)+m∗(A ∩ Ec). (A.2)
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This condition defines the collection M of measurable sets, which forms a σ -
algebra. Lebesgue measure is defined as the restriction,

m := m∗|M.

The criterion (A.2) can be used to produce a measure μ from any outer measure μ∗.
The Lebesgue class M includes all open sets. This is not immediately clear from

the condition (A.2), but in fact one can show that E ∈ M if and only if for each
ε > 0 there exists an open set U ⊃ E such that

m∗(U\E) ≤ ε. (A.3)

A similar characterization in terms of closed sets contained in E is also possible.
Since M is a σ -algebra, the fact that it contains all open sets implies that B ⊂M.

Since Lebesgue measure generalizes the classical notion of volume, it is common
to denote m(A) by vol(A), especially in geometric contexts.

A.1.2 Integration

On a measure space (X,M, μ), a simple function ϕ is a finite linear combination
of characteristic functions,

ϕ =
m∑
j=1

cjχEj ,

where cj ∈ C, Ej ∈ M, and μ(Ej ) < ∞ for each j . The integral of a simple
function is defined by the obvious sum,

∫

X

ϕ dμ :=
m∑
j=1

cjμ(Ej ).

A function f : X → R
n is measurable if the preimage of each Borel set is

contained in M. The measurability of f implies that there exists a sequence of
simple functions {ϕj } such that ϕj → f pointwise and |ϕj | → |f | monotonically.
With such an approximation we can define

∫

X

|f | dμ := lim
j→∞

∫

X

|ϕj | dμ.

We say that f is integrable if the integral of |f | is finite, in which case we can define

∫

X

f dμ := lim
j→∞

∫

X

ϕj dμ.
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The integral is well defined independently of the approximating sequence, and
linear in the sense that for two integrable functions,

∫

X

(f + g) dμ =
∫

X

f dμ+
∫

X

g dμ.

It is also monotonic, meaning that

f ≤ g (⇒
∫

X

f dμ ≤
∫

X

g dμ.

In the case of Lebesgue measure on R
n, this integral construction generalizes the

ordinary Riemann integral. In the main text we write the Lebesgue integral on R
n in

the traditional notation, replacing dm by dnx.
The integral construction sketched here yields a trio of very useful convergence

theorems.

Theorem A.3 (Monotone Convergence Theorem). Suppose that {fj } is a
sequence of measurable functions with

0 ≤ f1 ≤ f2 ≤ . . . .

Then,

lim
j→∞

∫

X

fj dμ =
∫

X

(
lim
j→∞ fj

)
dμ

(where both sides could be infinite).

Theorem A.4 (Fatou’s Lemma). If {fj } is a sequence of measurable functions
with fj ≥ 0, then

∫

X

(
lim inf
j→∞ fj

)
dμ ≤ lim inf

j→∞

∫

X

fj dμ

(where both sides could be infinite).

Theorem A.5 (Dominated Convergence Theorem). Suppose that {fj } is a
sequence of measurable functions such that fj → f pointwise. If there exists
an integrable function g such that |fj | ≤ g for all j , then

lim
j→∞

∫

X

fj dμ =
∫

X

f dμ.
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A.1.3 Product Measure

Given two measure spaces (X1,M1, μ1) and (X2,M2, μ2), we can construct
a measure on X1 × X2 using a generalization of the approach outlined in
Appendix A.1.1. We start by defining the measure of a “rectangular set” in the
obvious way. For A ∈M1 and B ∈M2,

π0(A× B) := μ1(A)μ2(B). (A.4)

We then use coverings by rectangles to construct an outer measure, forE ⊂ X1×X2,

π∗(E) := inf

{ ∞∑
j=1

π0(Aj × Bj ) : A ⊂
∞⋃
j=1

(Aj × Bj )
}
.

Carathéodory’s condition defines a class M of subsets of X1×X2 measurable with
respect to π∗. The restriction of π∗ to M then defines the product measure π , which
is commonly written as π = μ1 × μ2.

In the Lebesgue case, we could apply the product construction to obtain the
measure on R

n as a product of measures on R.
In principle, integrating with respect to a product measure on X1 × X2 could

give different results from an iterated integral defined by integrating separately
over the original X1 and X2. However, we can avoid this issue under fairly general
conditions.

Theorem A.6 (Fubini). Suppose that (X1,M1, μ1) and (X2,M2, μ2) are σ -
finite measure spaces, with the product space (X1 × X2,M, μ1 × μ2). If f is an
integrable function on X1 × X2, then the iterated integrals make sense in either
order and

∫

X1×X2

f d(μ1 × μ2) =
∫

X1

(∫

X2

f (x, y) dμ2(y)

)
dμ1(x)

=
∫

X2

(∫

X1

f (x, y) dμ1(x)

)
dμ2(y).

The same conclusion holds without the integrability assumption if f ≥ 0.

A.1.4 Differentiation

A function f : [a, b] → C is absolutely continuous if for each ε > 0 there exists
δ > 0 such that for every finite collection of disjoint subintervals (aj , bj ) satisfying

k∑
j=1

(bj − aj ) < δ,
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we have

k∑
j=1

∣∣f (bj )− f (aj )
∣∣ < ε.

One way to obtain an absolutely continuous function is by integration. If h ∈
L1[a, b], then the function

f (x) :=
∫ x

a

h(t) dt (A.5)

is absolutely continuous. Indeed, by a general measure theory argument, if g ∈
L1(X, dμ), then for ε > 0 there exists δ > 0 such that

μ(E) < δ (⇒
∫

E

|g| dμ < ε. (A.6)

Applying this in the case of Lebesgue measure on R, with E a finite union of
intervals, shows that (A.5) is absolutely continuous.

It turns that all absolutely continuous functions can be expressed as definite
integrals.

Theorem A.7 (Lebesgue Differentiation Theorem). If f is absolutely continuous
on [a, b], then f ′ exists almost everywhere, f ′ ∈ L1[a, b], and

f (x) = f (a)+
∫ x

a

f ′(t) dt.

Conversely, for g ∈ L1(a, b) the function defined by

f (x) :=
∫ x

a

g dt

is absolutely continuous, with f ′ = g a.e.

The property (A.6) suggests a related definition for measures. On a measure
space (X,M, μ), a measure ν on M is absolutely continuous with respect to μ
if for ε > 0 there exists δ > 0 such that

μ(E) < δ (⇒ ν(E) < ε.

By standard measure theory arguments, absolute continuity holds if and only if
every set of measure zero with respect to μ also has measure zero with respect
to ν. (This latter condition is frequently taken as the definition.)
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A.1.5 Decomposition of Measures

In this section we will review the Lebesgue decomposition theorem on R, which
was applied in Section 5.4.2 to establish a classification of the spectrum.

A Borel measure on R is regular if μ(K) < ∞ when K is compact. Let m
denote the Lebesgue measure on R. For the decomposition theorem, we distinguish
the following types of Borel measure:

(i) A pure point measure is a linear combination of point measures.
(ii) A measure μ is absolutely continuous if μ(E) = 0 whenever m(E) = 0.

(iii) A measure μ is singular continuous if μ is supported on a set of Lebesgue
measure zero, but μ{x} = 0 for each x ∈ R.

The Cantor measure (a probability measure supported on the Cantor set) is the
classic example of a singular continuous measure.

Theorem A.8 (Lebesgue Decomposition Theorem). A regular Borel measure μ
on R admits a unique decomposition,

μ = μpp + μac + μsc,

where μpp is pure point, μac is absolutely continuous, and μsc is singular continu-
ous.

Proof Consider the subset

Z := {x ∈ R : μ{x} > 0}.

Since μ[−n, n] < ∞ for all n by the regularity assumption, Z ∩ [−n, n] is finite.
Hence Z is at most countable. Let Z = {z1, . . .}, and define

μpp :=
∑
j

μ{zj }δzj .

If we then define μc := μ−μpp, then μc is a continuous Borel measure, meaning
that single point has measure zero. Let α be the associated cumulative distribution
function, centered at 0,

α(x) :=
{−μc(x, 0], x < 0,

μc[0, x], x ≥ 0.

Since μc is a continuous measure, α is a continuous increasing function. It follows
that α′ exists almost everywhere (with respect to Lebesgue measure) and is locally
integrable. We can thus define
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μac(E) :=
∫

E

α′ dm,

and then set μsc = μc − μac. 
�
For additional details on this construction, we refer the reader to Folland [31,

§3.5].

A.1.6 Riesz Representation

Let X be a compact topological space. In this section, we will develop the version
of the Riesz representation theorem stated as Theorem 5.3, which relates certain
continuous linear functionals on C(X) with Borel measures on X. Here C(X)

denotes the space of continuous functions X→ C.
A linear functional β : C(X)→ C is positive if

β(f ) ≥ 0 for f ≥ 0.

Applying the positivity condition to (sup |f | − |f |) ≥ 0 shows that

β(|f |) ≤ β(1) sup |f |.

It follows that a positive functional is bounded with respect to the sup norm, because

|β(f )| =
√
β(Re f )2 + β(Im f )2

≤ √2β(1) sup |f |.

The existence of a partition of unity will play an important role in the proof. This
is easy to establish for a compact metric space.

Lemma A.9 (Partition of Unity). Let X be a compact metric space, and {Uj }mj=1
a finite open cover. There exists a set of functions ψj ∈ C(X) such that 0 ≤ ψj ≤ 1,
suppψj ⊂ Uj for each j = 1, . . . , n, and

m∑
j=1

ψj = 1.

Proof For each x ∈ X, there exists an open metric ball Bx for which Bx ⊂ Uj
for some j . Since X is compact, a finite number of these balls, say Bxi for i =
1, . . . m, is sufficient to cover X. Set gi(x) := dist(x, Bcxi ) so that gi is continuous
and gi(x) > 0 if and only if x ∈ Bxi .
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For each j let hj be the sum of the gi for which Bxi ⊂ Uj . Since the Bxi form a
cover, for every x ∈ X we have hj (x) > 0 for at least one j . The desired functions
ψj are then obtained by normalizing

ψj (x) := hj (x)∑
k hk(x)

.


�
For f ∈ C(X) and U ⊂ X an open set, we use the notation

f ≺ U

to mean that 0 ≤ f ≤ 1 and supp f ⊂ U .

Theorem A.10 (Riesz Representation Theorem). Let X be a compact metric
space. Given a positive linear functional β : C(X) → C, there exists a unique
Borel measure μ on X such that

β(f ) =
∫

X

f dμ (A.7)

for f ∈ C(X).
Proof For an open set U ⊂ X, let

μ(U) := sup
{
β(f ) : f ∈ C(X), f ≺ U

}
.

For an arbitrary subset A ⊂ X, we then set

μ∗(A) := inf
{
μ(U) : U open and A ⊂ U

}
. (A.8)

To see that μ∗ is an outer measure, we need to establish countable subadditivity.
Suppose that {Aj } is a countable sequence of subsets of X, and set A := ∪Aj . Our
goal is to prove that

μ∗(A) ≤
∑

μ∗(Aj ). (A.9)

Given ε > 0, for each j we can find an open set Uj ⊃ Aj such that

μ(Uj ) ≤ μ∗(Aj )+ 2−j ε.

Adding these together thus gives

∞∑
j=1

μ(Uj ) ≤
∞∑
j=1

μ∗(Aj )+ ε. (A.10)
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Now let U := ∪jUj . By the definition (A.8),

μ∗(A) ≤ μ∗(U). (A.11)

Consider f ∈ C(X) with f ≺ U . Since supp(f ) is compact, we have supp(f ) ⊂
∪nj=1Uj for some finite n. If we set U0 := supp(f )c, then {Uj }∞j=0 is a cover for X.
By Lemma A.9, there exists a partition of unity {ψj }nj=0 ⊂ C(X), with 0 ≤ ψj ≤ 1,
suppψj ∈ Uj and

n∑
j=0

ψj = 1.

This construction yields f = ∑n
j=1 fψj and ψjf ≺ Uj for j = 1, . . . , n.

Hence,

β(f ) =
n∑
j=1

β(fψj )

≤
n∑
j=1

μ(Uj ).

By (A.10), this gives

β(f ) ≤
∞∑
j=1

μ∗(Aj )+ ε.

Since this holds for all f ≺ U , it implies that

μ∗(U) ≤
∞∑
j=1

μ∗(Aj )+ ε.

Applying (A.11) and taking ε→ 0 thus prove (A.9).
With μ∗ established as an outer measure, we can now apply the standard

Carathéodory construction to obtain a measure μ on the σ -algebra M defined by
the condition that E ⊂ X is measurable if

μ∗(A) = μ∗(A ∩ E)+ μ∗(A− E) (A.12)

for all A ⊂ X.
To show that μ is a Borel measure, we must check that each open set U ⊂ X

satisfies (A.12). Given A ⊂ X and ε > 0, choose an open set V ⊃ A such that

μ∗(V ) ≤ μ∗(A)+ ε. (A.13)
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Since V ∩ U is open, there exists f ∈ C(X) with f ≺ V ∩ U and

β(f ) ≥ μ∗(V ∩ U)− ε.

Similarly, there exists g ∈ C(X) with g ≺ V − supp(f ) and

β(g) ≥ μ∗(V − supp f )− ε.

Then f + g ≺ V , and so

μ∗(V ) ≥ β(f )+ β(g)
≥ μ∗(V ∩ U)+ μ∗(V − supp f )− 2ε

≥ μ∗(A ∩ U)+ μ∗(A− U)− 2ε.

Using (A.13) and then taking ε→ 0 give

μ∗(A) ≥ μ∗(A ∩ U)+ μ∗(A− U).

Since the opposite inequality is automatic by subadditivity, this proves that U is
measurable. Therefore, μ is a Borel measure on X.

The final step is to prove the integral formula (A.7), which will also establish the
uniqueness of μ. Consider f ∈ C(X) with f ≥ 0. We first claim that

μ{f ≥ 1} ≤ β(f ) ≤ μ(supp f ). (A.14)

The upper bound follows from the definition (A.8), because f ≺ U for any U ⊃
supp(f ). For the lower bound, let Uε := {f > 1 − ε} for ε > 0. For g ≺ Uε we
have f ≥ (1− ε)g, which by the positivity of β implies that

β(g) ≤ (1− ε)−1β(f ).

Taking the supremum over all g ≺ Uε gives

μ(Uε) ≤ (1− ε)−1β(f ).

Therefore, by (A.8),

μ{f ≥ 1} ≤ (1− ε)−1β(f ).

Taking ε→ 0 yields the lower bound in (A.14).
To refine the estimate (A.14), we fix some n ∈ N and decompose f into layers

of height 1/n by setting



314 A Background Material

fj (x) :=

⎧
⎪⎪⎨
⎪⎪⎩

0, f (x) < j/n,

f (x)− j/n, j/n ≤ f (x) ≤ (j + 1)/n,

1/n, f (x) > (j + 1)/n.

Note that 0 ≤ fj ≤ 1/n, and

f =
m∑
j=1

fj (A.15)

for m large enough that sup f ≤ m/n.
If we set Kj := supp(fj ), then the fact that χKj+1 ≤ nfj ≤ χKj implies

μ(Kj+1) ≤ n

∫

X

fj dμ ≤ μ(Kj ),

by the monotonicity of the integral. By (A.15), we can sum over j to obtain

1

n

m∑
j=1

μ(Kj ) ≤
∫

X

f dμ ≤ 1

n

m∑
j=0

μ(Kj ). (A.16)

(Note that Km = ∅.)
On the other hand, we can apply (A.14) to the function nfj to conclude that

μ(Kj+1) ≤ nβ(fj ) ≤ μ(Kj ).

Summing over j gives

1

n

m∑
j=1

μ(Kj ) ≤ β(f ) ≤ 1

n

m∑
j=0

μ(Kj ).

In conjunction with (A.16), this shows that

∣∣∣∣
∫

X

f dμ− β(f )
∣∣∣∣ ≤

μ(K0)

n
.

Taking n → ∞ then completes the proof of (A.7) for f ≥ 0. The general case
follows by linearity. 
�

For the application of the Riesz representation theorem to spectral measures in
Section 5.1.2, we need to know that C(X) is dense in L2(X, dμ). This holds for
general Borel measures under certain regularity conditions. For measures obtained
via the Riesz theorem, we can give a simple direct proof.
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Lemma A.11. LetX be a compact metric space andμ a Borel measure constructed
from a positive functional on C(X) as in Theorem A.10. Then C(X) is dense in
Lp(X, dμ) for 1 ≤ p <∞.

Proof By the definition of the integral on a measure space, simple functions are
dense in Lp. It therefore suffices to show that the characteristic function χE for a
Borel subset E ⊂ X can be approximated in the Lp sense by continuous functions.
Given ε > 0, the definition of μ∗ gives an open set U ⊃ E such that μ(U−E) < ε.
Then, by the definition of μ in terms of the functional β, there exists f ∈ C(X)

such that f ≺ U and

μ(U)−
∫

X

f dμ < ε.

We can then estimate

‖χE − f ‖p ≤ ‖χE − χU‖p + ‖χU − f ‖p
≤ 2ε

1
p .


�
The Riesz representation theorem can be extended to more general topological

spaces. The limiting factor is essentially the existence of the partition of unity. For a
locally compact Hausdorf space, Urysohn’s lemma implies the existence of locally
finite partitions of unity, and the Riesz theorem can be extended to this case by a very
similar argument. For further details, see, e.g., Rudin [78, Thm. 6.19] or Folland [31,
§7.1].

A.2 Lp Spaces

Let (X,M, μ) be a measure space. For p ∈ [1,∞), the Lp norm of a measurable
function f : X→ C is defined by

‖f ‖p :=
(∫

X

|f |p dμ
)1
p

. (A.17)

For p = ∞, the integral is replaced by the essential supremum,

‖f ‖∞ := inf
{
m ∈ R : |f | ≤ m a.e.

}
.

The Lp spaces are defined as

Lp(X, dμ) := {f measurable X→ C : ‖f ‖p <∞
}
, (A.18)

subject to the standard equivalence of functions that agree almost everywhere with
respect to μ.
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The function ‖·‖p is homogeneous because of the power 1/p included in (A.17),
and positive definiteness is a consequence of the equivalence relation imposed on
Lp(X, dμ). The Lp version of the triangle inequality is known as the Minkowski
inequality. It is obvious for p = 1 or ∞, and follows from Cauchy–Schwarz for
p = 2. Its proof in the general case relies on the following:

Lemma A.12 (Hölder Inequality). Let f, g be measurable functions on X. For
p, q ≥ 1 with 1/p + 1/q = 1,

‖fg‖1 ≤ ‖f ‖p‖g‖q . (A.19)

Proof Assume that p, q are as in the statement. For x > 0, calculus shows that the
function

h(x) := x − xp

p

is maximized when x = 1. Therefore,

x − xp

p
≤ 1− 1

p

for all x > 0. Setting x = ab−q/p for a, b > 0 gives, after some simplification, the
inequality

ab ≤ ap

p
+ bq

q
, (A.20)

which clearly extends to the case where a or b = 0,
Now suppose f, g are measurable functions onX. The inequality (A.19) is trivial

if either f ≡ 0 or g ≡ 0, so we can assume that these functions have nonzero norms.
Setting a = |f (x)|/‖f ‖p and b = |g(x)|/‖g‖q in (A.20) gives

|f (x)g(x)|
‖f ‖p‖g‖q ≤

1

p

|f (x)|p
‖f ‖pp

+ 1

q

|g(x)|q
‖g‖qq

.

Integration over x gives

‖fg‖1

‖f ‖p‖g‖q ≤
1

p
+ 1

q
= 1,

yielding (A.19). 
�
Corollary A.13 (Minkowski Inequality). Let f, g be measurable functions on X.
For p ≥ 1,

‖f + g‖p ≤ ‖f ‖p + ‖g‖p.
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Proof As in the proof of Hölder, we can assume f and g are not ≡ 0, since this
case is trivial. From (A.19), we have

‖f ‖p ≥ ‖f h‖1 (A.21)

under the assumption that ‖h‖q = 1 where q = p/(p − 1). Since equality holds in
(A.21) for h = |f |p−1/‖f p−1‖q , we can conclude that

‖f ‖p = sup
‖h‖q=1

‖f h‖1,

The triangle inequality for Lp now follows,

‖f + g‖p = sup
‖h‖q=1

‖(f + g)h‖1

≤ sup
‖h‖q=1

‖f h‖1 + sup
‖h‖q=1

‖gh‖1

= ‖f ‖p + ‖g‖p.

�

On R
n, a step function is defined as a linear combination of characteristic

functions of rectangles. From the construction of Lebesgue measure described
in Appendix A.1.1, we can deduce that the step functions are dense in Lp(Rn)

for p ∈ [1,∞). (See, e.g., Royden [76, §6.4].) By smoothing the edges of the
characteristic functions, we can thus conclude that C∞0 (Rn) is also dense as a subset
of Lp(Rn).

A.2.1 Completeness

This section is devoted to the proof of the completeness ofLp spaces (Theorem 2.5).
The result is a straightforward consequence of the convergence theorems from the
Lebesgue integration theory.

Theorem A.14 (Riesz–Fischer). For p ∈ [1,∞], Lp(X, dμ) is complete as a
metric space.

Proof By Theorem 2.4, it suffices to show that an absolutely convergent series
is convergent. Consider first the case p = ∞. For {uk}∞k=1 ⊂ L∞(X, dμ), set
mk := ‖uk‖∞. We assume that the series is absolutely convergent, which means
that

∑
mk <∞. (A.22)
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Since each |uk| is bounded by mk almost everywhere, we can define an exceptional
set

E :=
∞⋃
k=1

{x : |uk(x)| > mk},

of measure zero, such that |uk| ≤ mk for all k on X\E. For x /∈ E, the
series

∑
uk(x) converges absolutely by (A.22). We can thus define a function

f ∈ L∞(X, dμ) by

f (x) =
∞∑
k=1

uk(x), for x /∈ E,

with the values onE being irrelevant because the set has measure zero. The function
f lies in L∞(X, dμ), with

‖f ‖∞ ≤
∞∑
k=1

mk.

It follows from (A.22) that
∑
uk converges to f in the L∞ sense, because

∥∥∥∥f −
n∑
k=1

uk

∥∥∥∥∞
≤

∞∑
k=n+1

mk.

Now let p ∈ [1,∞) and assume that
∑
uk is an absolutely convergent series in

Lp(X, dμ). Define

g(x) :=
∞∑
k=1

|uk(x)|.

The triangle inequality implies that

∥∥∥∥
N∑
k=1

|uk|
∥∥∥∥
p

≤
N∑
k=1

‖uk‖p. (A.23)

By the monotone convergence theorem, the left-hand side of (A.23) converges to
‖g‖p as N →∞, implying that

‖g‖p ≤
∞∑
k=1

‖uk‖p.

Since
∑
uk converges absolutely, this shows g ∈ Lp(X, dμ).
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In particular, g is finite a.e., so the series
∑
uk(x) converges absolutely for

a.e. x ∈ X. Hence the series
∑
uk converges pointwise a.e. to some function f .

Moreover, |f | ≤ g, so f ∈ Lp(X, dμ) also. Since

∣∣∣∣
m∑
k=0

uk − f
∣∣∣∣
p

≤ (2g)p,

and gp is integrable, the dominated convergence theorem implies that

lim
m→∞

∫

X

∣∣∣∣
m∑
k=0

uk − f
∣∣∣∣
p

dμ = 0.

Hence the series
∑
uk converges to f in Lp. 
�

A.2.2 Convolution

The convolution of two measurable functions on R
n is defined by

f ∗ g(x) :=
∫

Rn

f (x − y)g(y) dny, (A.24)

assuming the integral is well defined. For f, g ∈ L1(Rn), we can deduce from
Fubini’s theorem that the integral (A.24) exists for almost every x, defining a
function f ∗ g ∈ L1(Rn) which satisfies

‖f ∗ g‖1 ≤ ‖f ‖1‖g‖1.

This basic result can be extended to combinations of Lp spaces, as follows.

Theorem A.15 (Young’s Convolution Inequality). Suppose f ∈ Lp(Rn) and g ∈
Lq(Rn). Then, if r satisfies

1

p
+ 1

q
= 1+ 1

r
, (A.25)

then f ∗ g ∈ Lr(Rn) and

‖f ∗ g‖r ≤ ‖f ‖p‖g‖q .

Proof It suffices to consider the case f, g ∈ C∞0 (Rn). Applying Hölder’s
inequality twice yields a triple product version,

‖fgh‖1 ≤ ‖f ‖s‖g‖t‖h‖r , (A.26)
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where

1

s
+ 1

t
+ 1

r
= 1.

To prove Young’s inequality, we first divide up the convolution integrand into
three terms,

|f ∗ g(x)| ≤
∫

Rn

|f (x − y)g(y)| dny

≤
∫

Rn

|f (x − y)|1− p
r · |g(y)|1− q

r · ∣∣f (x − y)pg(y)q ∣∣ 1
r dny.

Applying the Hölder inequality (A.26) to this expression gives

|f ∗ g(x)| ≤ ∥∥f 1− p
r

∥∥
s

∥∥g1− q
r

∥∥
t

∥∥f (x − ·) pr g q
r

∥∥
r
. (A.27)

Assuming that (A.25) holds, we can choose s and t so that

1

s
= 1

p
− 1

r
,

1

t
= 1

p
− 1

r
.

With these choices, (A.27) gives

|f ∗ g(x)|r ≤ ‖f ‖1− p
r

p ‖g‖1− q
r

q

∫

Rn

|f (x − y)|p |g(y)|q dny. (A.28)

For the remaining integral over x, note that

∫

Rn

∫

Rn

|f (x − y)|p |g(y)|q dny dnx ≤ ‖f ‖pp ‖g‖qq ,

by Fubini’s theorem. Integrating (A.28) over x thus yields

‖f ∗ g‖rr ≤ ‖f ‖r−pp ‖g‖r−qq ‖f ‖pp ‖g‖qq
= ‖f ‖rp ‖g‖rq .


�

A.3 Fourier Transform

In this section we review some standard background material on the Fourier
transform, which is used extensively in the text.
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The Fourier transform of a function in f ∈ L1(Rn) is defined by

f̂ (ξ) := (2π)−
n
2

∫

Rn

e−ix·ξ f (x) dnx. (A.29)

As a map the transform is denoted by

F : f �→ f̂ .

The properties of the Fourier transform of an integrable function are characterized
by the following:

Lemma A.16 (Riemann–Lebesgue). For f ∈ L1(Rn), the Fourier transform f̂ is
continuous and bounded, with

lim|ξ |→∞ f̂ (ξ) = 0.

Proof From (A.29) we see immediately that

|f̂ (ξ)| ≤ (2π)−
n
2 ‖f ‖1 (A.30)

for all ξ ∈ R
n. This also shows that F maps L1 convergent sequences to uniformly

convergence sequences.
For f ∈ L1(Rn), let {ψk} ⊂ C∞0 (Rn) be an approximating sequence such that

ψk → f in L1. Using integration by parts, we can check that ψ̂k is smooth and
approaches zero as |ξ | → ∞. Since ψ̂k → f̂ uniformly on R

n, it follows that f̂ is
continuous and decays to zero at infinity. 
�

The primary goal of this section is to explain how the definition of F is extended
to L2 functions, for which the integral (A.29) may not exist.

Theorem A.17 (Plancherel). The Fourier transform defined by (A.29) extends to
a unitary map F : L2(Rn)→ L2(Rn).

To prove Plancherel’s theorem, we first study the restriction of F to the space of
Schwartz functions,

S(Rn) :=
{
f ∈ C∞(Rn); ∥∥xαDβf

∥∥∞ <∞ for all α, β ∈ (N0)
n
}
. (A.31)

For a Schwartz function ψ ∈ S(Rn), integration by parts implies that

F[Dα
xψ](ξ) = (iξ)αψ̂(ξ), (A.32)

and

F[xαψ](ξ) = (iDξ )
αψ̂(ξ). (A.33)
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This means that, under the Fourier transform, smoothness translates to rapid decay
and vice versa.

Lemma A.18. The Fourier transform F maps S(Rn)→ S(Rn).
Proof Suppose that f ∈ S . In order to show that f̂ is Schwartz, we need to produce
a bound on the function ξβDαf̂ for each α, β. By (A.32) and (A.33),

ξβDα
ξ f̂ (ξ) = i|α|+|β|

∫

Rn

e−iξ ·xxαDβ
x f (x) d

nx. (A.34)

Because (1+ |x|2)−N is integrable for N sufficiently large, we can estimate (A.34)
by

∣∣∣ξβDα
ξ f̂ (ξ)

∣∣∣ ≤ CN sup
∣∣∣(1+ |x|2)NxαDβ

x f

∣∣∣.

The right side is finite for all N by the definition (A.31). 
�
The final ingredient for the proof of Theorem A.17 is the formula for the Fourier

transform of a Gaussian function. Let

g(x) := e−a|x|2, (A.35)

for a > 0. By completing the square, and then using contour integration to make a
complex change of variables, we can compute

ĝ(ξ) = (2a)−
n
2 e−|ξ |2/4a. (A.36)

Theorem A.19. The Fourier transform on S(Rn) defined by (A.29) has an inverse
F−1 given by

f (x) = (2π)−n
∫

Rn

eiξ ·xf̂ (ξ) dnξ. (A.37)

Proof For f, g ∈ S(Rn), consider the integral

∫

Rn

∫

Rn

f (x)e−ix·yg(y) dnx dny. (A.38)

The integrals over x and y can be taken in either order, by Fubini, yielding the
identity

∫

Rn

f ĝ dnx =
∫

Rn

f̂ g dny. (A.39)
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Now let g be the Gaussian function (A.35). By (A.36),

(2a)−
n
2

∫

Rn

f (x)e−|x|2/4a dnx =
∫

Rn

f̂ (y)e−a|y|2 dny. (A.40)

Rescaling the variable on the left-hand side of (A.40) yields

2−
n
2

∫

Rn

f (
√
ax)e−|x|2/4 dnx =

∫

Rn

f̂ (y)e−a|y|2 dny.

By the dominated convergence theorem, taking a→ 0 then gives

(2π)
n
2 f (0) =

∫

Rn

f̂ (y) dny. (A.41)

This verifies (A.37) for x = 0.
The general inverse formula can be deduced from (A.41) by a simple translation

argument. For w ∈ R
n, define the translation operator Tw on S(Rn) by

Twf (x) := f (x + w).

A change of variables shows that

T̂wf (y) =
∫

Rn

e−ix·yf (x + w) dnx

=
∫

Rn

e−i(x−w)·yf (x) dnx

= eiw·yf̂ (y).

Plugging Twf into (A.41) yields

(2π)n/2f (w) =
∫

Rn

eiw·yf̂ (y) dny.


�
From the pairing formula (A.39) and the invertibility of F , we can immediately

deduce that

〈f̂ , ĝ〉 = 〈f, g〉 (A.42)

for f, g ∈ S(Rn). It is straightforward to extend a unitary map from a dense
subspace to the full Hilbert space, so Theorem A.17 follows from (A.42), Theo-
rem A.19, and the fact that S(Rn) is dense as a subspace of L2(Rn).
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A.4 Elliptic Regularity

In Section 6.3 we gave a simple argument for the interior regularity of eigenfunc-
tions. This approach, based on the Fourier characterization of Sobolev spaces, is
easily generalized to elliptic PDE with constant coefficients. To handle elliptic
operators with variable coefficients, or to include regularity up to the boundary, a
different strategy is required.

In this section we will prove the more general elliptic regularity result stated in
the text as Theorem 9.27. For more general versions of this result, see, e.g., Evans
[29, §6.3.2], Gilbarg and Trudinger [36, §8.4], or Taylor [89, §5.1]

Theorem A.20 (Elliptic Regularity). Let Ω be a compact Riemannian manifold
with boundary, with −� be the Dirichlet Laplacian defined in Section 9.3. If u ∈
D(�) and �u ∈ Hm(Ω) for some m ∈ N0, then u ∈ Hm+2(Ω), with

‖u‖Hm+2 ≤ C
(‖�u‖Hm + ‖u‖),

where C depends only on Ω and m.

The strategy for the proof of Theorem A.20 is to use difference quotients to
estimate weak derivatives. For h ∈ R and f a function on R

n, define

∂hj f (x) :=
f (x + hej )− f (x)

h

for j = 1, . . . n, where {ej } denotes the standard basis for Rn. We first need to prove
a basic estimate for difference quotients in terms of derivatives.

Lemma A.21. Suppose u ∈ H 1
0 (U) where U ⊂ R

n is a bounded open set. For
ε > 0, let Uε := {x ∈ U : d(x, ∂U) > ε}. If supp(u) ⊂ Uε for ε > 0, then for
|h| < ε,

‖∂hj u‖L2 ≤ ‖∂ku‖L2 .

Proof For ψ ∈ C∞0 (Ω), the difference quotient can be expressed as an integral,

∂hj ψ(x) =
1

h

∫ h

0
∂jψ(x + tej ) dt,

for h sufficiently small. Applying Cauchy–Schwarz then gives the estimate,

|∂hj ψ(x)|2 ≤
1

h

∫ h

0

∣∣∂jψ(x + tej )
∣∣2 dt.

Integrating over x then gives
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‖∂hj ψ‖2 ≤ 1

h

∫

U

∫ h

0

∣∣∂jψ(x + tej )
∣∣2 dt dx

= 1

h

∫ h

0

∫

U

∣∣∂jψ(x + tej )
∣∣2 dx dt

= ‖∂jψ‖2.

The estimate can now be extended to a function u ∈ H 1
0 (U) with support in Uε,

by choosing an approximating sequence {φk} ⊂ C∞0 (Ω) such that φk → u in H 1.

�

Proof of Theorem A.20 The first observation is that the proof can be localized
to coordinate neighborhoods. Let {Uj }qj=1 and {χj } be the coordinate atlas and
corresponding partition of unity used to define the Sobolev norms as in (9.39). A
simple concavity argument shows that

‖u‖Hm �
q∑
j=1

‖χju‖Hm,

for each m, with constants that depend only on q. Furthermore,

‖�(χju)‖Hm ≤ ‖χj�u‖Hm + ‖[�,χj ]u‖Hm

≤ ‖χj�u‖Hm + C‖u‖Hm+1 .

We will first show that

‖χju‖H 2 ≤ C
(‖�(χju)‖L2 + ‖χju‖L2

)
, (A.43)

for each j . We only need to consider the case of a boundary neighborhood Uj , as
the interior estimate can be considered as a special case where the cutoff vanishes
near the boundary.

To prove (A.43), we can specialize to the case of a bounded domain U := {|x| <
R, xn > 0} in R

n, with the metric g represented in coordinates as matrix gij . On
H 1

0 (U) we define the sesquilinear form

Q[u, v] =
∫

U

g(∇u,∇v) dV

:=
∫

U

gij (∂iu)(∂j v)
√
g dnx.

For simplicity, we will write this as
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Q[u, v] =
∫

U

aij (∂iu)(∂j v) d
nx,

where aij := gij
√
g.

Recall the local formula (9.33) for the Laplacian,

� = 1√
g
∂i
(√
ggij ∂j

)
. (A.44)

By the definition of D(−�) from Section 9.4.1, we have

Q[u, v] = 〈−�u, v〉, (A.45)

for u ∈ D(−�) and v ∈ H 1
0 (U).

For the application to (A.43), we may assume that u is supported away from the
boundary of U , except possibly at xn = 0. Assuming the v ∈ H 1

0 (U) shares this
property, we can apply ∂hk to v for k = 1, . . . , n − 1 and h sufficiently small. We
then deduce from (A.45) that

Q[u, ∂hk v] = 〈−�u, ∂hk v〉. (A.46)

Writing out the left-hand side gives

Q[u, ∂hk v] =
∫

U

aij (∂iu)(∂j ∂
h
k v) d

nx.

By a linear change of variables, the difference quotient can be transferred from one
term to the other (as if integrating by parts) to obtain

Q[u, ∂hk v] = −
∫

U

∂−hk (aij ∂iu) ∂j v dx.

A simple product-rule computation shows that

∂−hk (aij ∂iu) = aij (x − hek)∂i(∂−hk u)+ (∂−hk aij )∂iu.

(As above, {ek} denotes the standard basis for Rn.) Applying these computations to
(A.46) gives

∫

U

aij (x − hek)∂i(∂−hk u) ∂j v dx =
∫

U

[
(Lu)∂hk v − (∂−hk aij )∂iu ∂j v

]
dx.

By Lemma A.21, the L2 norm of ∂hk v can be estimated by that of ∂kv, for h
sufficiently small. Thus Cauchy–Schwarz gives the estimate
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∫

U

aij (x − hek)∂i(∂−hk u) ∂j v dx ≤ C
(‖�u‖ + ‖∇u‖)‖∇v‖

≤ C
(‖�u‖ + ‖u‖H 1

)‖∇w‖.
(A.47)

Here C is independent of h, because the coefficients (∂−hk aij ) are bounded
uniformly for small h, by the mean value theorem.

Now let us set v = ∂−hk u. The fact that gij is smooth and positive definite on U
implies

∫

U

aij (x − hek)∂i(∂−hk u) ∂j (∂
−h
k u) dx ≥ c

∥∥∥∂−hk ∇u
∥∥∥

2
.

Applying this in (A.47) gives

∥∥∥∂−hk ∇u
∥∥∥

2 ≤ C
(‖�u‖ + ‖u‖H 1

)∥∥∥∂−hk ∇u
∥∥∥,

which yields

∥∥∥∂−hk ∇u
∥∥∥ ≤ C

(‖�u‖ + ‖u‖H 1

)
. (A.48)

By Cauchy–Schwarz, we can estimate

‖u‖2
H 1 = 〈−�u, u〉
≤ ‖�u‖‖u‖

≤ 1

2
(‖�u‖ + ‖u‖)2.

Therefore, (A.48) can be reduced to

∥∥∥∂−hk ∇u
∥∥∥ ≤ C

(‖�u‖ + ‖u‖), (A.49)

with C independent of h.
By Alaoglu’s theorem (Theorem 2.37), the uniform estimate (A.49) implies that

there exists functions fj ∈ L2(U) satisfying

‖fj‖ ≤ C
(‖�u‖ + ‖u‖),

and a sequence hl → 0 such that ∂−hlk ∂ju→ fj weakly as l→ 0. For ψ ∈ C∞0 (U)

we have
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∫

U

fjψ dnx = lim
l→0

∫

U

(∂
−hl
k ∂ju)ψ dnx

= − lim
l→0

∫

U

∂ju ∂
hl
k ψ dnx

= −
∫

U

∂ju ∂kψ dnx.

This shows that fj = ∂k∂ju as a weak derivative, and (A.49) gives the estimate

‖∂k∇u‖ ≤ C
(‖�u‖ + ‖u‖). (A.50)

This argument required k ≤ n−1, so the estimate (A.50) covers all of the second
partial derivatives of u except for ∂2

nu. To handle this case, note that (A.44) implies
that

�u = 1√
g

[ ∑
(i,j) �=(n,n)

∂i[aij ∂ju] + ann∂2
nu+ (∂nann)∂nu

]
.

All of the terms here except ann∂2
nu are inL2(U), either by assumption or by (A.50).

Since ann is bounded below by a positive constant, by the positive definiteness of
the metric on U , it follows that ∂2

nu ∈ L2(U), with

∥∥∂2
nu
∥∥ ≤ C

(‖�u‖ + ‖u‖).

Together with (A.50), this shows that u ∈ H 2(U), with

‖u‖H 2 ≤ C
(‖�u‖ + ‖u‖). (A.51)

This completes the proof of (A.43), which settles the case m = 0.
To prove the estimate for higher m we proceed by induction. Assume that u ∈

Hm+1(U) (with support as described above) and satisfies

‖u‖Hm+1 ≤ C
(‖�u‖Hm−1 + ‖u‖Hm

)
.

For the inductive step we assume that �u ∈ Hm(U), and need to show that this
implies u ∈ Hm+2(U), with the corresponding estimate.

Since u ∈ Hm+1, the weak derivativeDαu exists for |α| = m and lies inH 1
0 (Ω).

It satisfies the equation

�(Dαu) = Dα(�u)− [�,Dα]u. (A.52)
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By the assumptions on u and �u, and the fact that [�,Dα] is a differential operator
of order m+ 1, the right-hand side of (A.52) lies in L2(Ω). We can therefore apply
the bound (A.51) to Dαu to conclude that Dαu ∈ H 2(Ω) with

‖Dαu‖H 2 ≤ C
(‖�(Dαu)‖ + ‖Dαu‖H 1

)
.

Furthermore, by (A.52) we can estimate

‖�(Dαf )‖ ≤ ‖�u‖Hm + C‖u‖Hm+1 .

It thus follows that

‖u‖Hm+2 ≤ C
(‖�u‖Hm + ‖u‖Hm+1

)
.


�
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